首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,-1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,-3,1,a)T, (Ⅰ)求矩阵A;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,-1,3)T, 又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,-3,1,a)T, (Ⅰ)求矩阵A;
admin
2015-05-07
75
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是
η
1
=(1,3,0,2)
T
,η
2
=(1,2,-1,3)
T
,
又知齐次方程组Bx=0的基础解系是
β
1
=(1,1,2,1)
T
,β
2
=(0,-3,1,a)
T
,
(Ⅰ)求矩阵A;
(Ⅱ)如果齐次线性方程组Ax=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
x=0的解.对C
T
作初等行变换,有 [*] 得到C
T
x=0的基础解系为α
1
=(3,-1,1,0)
T
,α
2
=(-5,1,0,1)
T
. 所以矩阵A=[*] (Ⅱ)设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出, 也可由β
1
,β
2
线性表出,故可设 γ=x
1
η
1
+x
2
η
2
=-x
3
β
1
-x
4
β
2
, 于是 x
1
η
1
+x
2
η
2
+x
3
β
1
+x
β
2
=0. 对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有 (η
1
,η
2
,β
1
,β
2
)=[*]γ≠0[*]x
1
,x
2
,x
3
,x
4
不全为0[*秩r(η
1
,η
2
,β
1
,β
2
)<4[*]a=0. 当a=0时,解出x
4
=t,x
3
=-t,x
2
=-t,x
1
=2t. 因此Ax=0与Bx=0的公共解为γ=2tη
1
-tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zi54777K
0
考研数学一
相关试题推荐
设A是3阶实对称矩阵,λ=5是A的二重特征值.对应的特征向量为ξ1=[1,-1,2]T,ξ2=[1,2,1]T,则二次型f(x1,x2,x3)=xTAx在x0=[1,5,0]T的值f(1,5,0)=________.
若f(x1,x2,x3)=2x12+x22+x32+2x1x2-tx2x3是正定二次型,则t的取值范围是________.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求矩阵B,使得A[α1,α2,α3]=[α1,α2,α3]B;
已知齐次线性方程组及齐次线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
方程组有解的充要条件是________.
求微分方程y”一2y’一e2x=0满足条件y(0)一1,y’(0)=1的特解.
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设在x=0连续且满足g(x)=1+2x+o(x)(x→0).又F(x)=f[g(x)],则F’(0)=_______.
随机试题
"MoneyMattersonCampus"isarecentlyre-leasedstudyonfinancialliteracyamongyoungadults.Itsupportsprovidingstudents
血型不规则抗体指的是
消渴病日久,易发生阴损及阳,阴阳俱虚病变,其中以哪些脏腑虚损较为多见
A.乌梅与氢氧化铝B.乌梅与阿司匹林C.大黄和淀粉酶D.大黄和利福平E.石膏和四环素能减少排泄的中西药联合用药药组是()。
教师孙某2014年8月份,取得下列收入:学校发放8月份工资2500元;当月提供技能培训,学校发补助1600元;8月20日一8月31日受另外一所学校邀请临时代课,获得1500元,则下列表述中正确的是()。
三道茶是()传统的品茶艺术和待客礼仪。
对求助者个人成长史资料的整理不包括()。
(2014深圳58)①长期以来,年终检查评比就像吃年夜饭一样,成了许多部门和单位的_______。②从印刷术的普及,到声光电传播,再到信息技术的兴起,任何一次传媒工具的重大_______,都会带来文化话语权的转移。③某商业领域之所以成为蓝海,就是现有市
(46)ScientistsatJohnsHopkinshavediscovered"striking"differencesbetweenmenandwomeninapartofthebrainlinkedwith
ToErrIsHumanEveryonemusthavehadatleastonepersonalexperiencewithacomputererrorbythistime.Bankbalancesar
最新回复
(
0
)