首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y”一2y’一e2x=0满足条件y(0)一1,y’(0)=1的特解.
求微分方程y”一2y’一e2x=0满足条件y(0)一1,y’(0)=1的特解.
admin
2021-08-02
62
问题
求微分方程y”一2y’一e
2x
=0满足条件y(0)一1,y’(0)=1的特解.
选项
答案
齐次方程y”—2y’=0的特征方程为r
2
一2r=0,由此求得特征根r
1
=0,r
2
=2.对应齐次方程的通解为Y=C
1
+C
2
e
2x
,设非齐次方程的特解为y
*
=Axe
2x
,代入原方程,求得A=[*],从而y
*
=[*]xe
2x
.于是,原方程通解为 [*] 由y(0)=1和y’(0)=1,得C
1
=[*],C
2
=[*].从而,所求特解为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sWy4777K
0
考研数学二
相关试题推荐
求y〞-2y′-e2χ=0满足初始条件y(0)=1,y′(0)=1的特解.
设A是n阶矩阵,α是n维列向量,若,则线性方程组()
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β()
设A=,B=(A+kE)2(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设f(χ)可导,且F(χ)=f(χ)(1+|sinχ|),则f(0)=0是F(χ)在χ=0处可导的()条件.【】
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
随机试题
美国密歇根州与伊利诺伊州发生商务纠纷,有权审理这一案件的法院应是()
肺血栓栓塞症溶栓治疗的药物不包括
根据《著作权法》的规定,下列各项中,属于对作品合理使用的有()。
()是保险合同权利义务指向的对象,是保险利益的载体
最具竞争性的招标采购方式是()。
“明日复明日,明日何其多?我生待明日,万事成蹉跎。”教师经常用这首诗鼓励学生珍惜时光,努力学习。这种行为属于意志品质的()。
客观性是真理的基本特性。()
IfIhadn’tstoodundertheladdertocatchyouwhenyoufell,you______now.
Impressionismbeganwithasmallgroupofartistswhowantedto______.Thefirstimpressionists______.
Arecentsurveyshowedthat50percentofpeoplepolledbelievethatelectedofficialsshouldresignifindictedforacrime,wh
最新回复
(
0
)