首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设0<x1<3,xn+1=(n=1,2,…),证明:数列{xn}的极限存在,并求此极限。
设0<x1<3,xn+1=(n=1,2,…),证明:数列{xn}的极限存在,并求此极限。
admin
2018-04-14
88
问题
设0<x
1
<3,x
n+1
=
(n=1,2,…),证明:数列{x
n
}的极限存在,并求此极限。
选项
答案
由0<x
1
<3,知x
1
,3-x
1
均为正数,故 0<x
2
=[*]≤1/2(x
1
+3-x
1
)=3/2。 设0<x
k
≤3/2(k>1),则0<x
k+1
=[*]≤1/2(x
k
+3-x
k
)=3/2。 由数学归纳法知,对任意正整数n>1,均有0<x
n
≤3/2,因而数列{x
n
}有界。 又当n>1时, x
n+1
-x
n
[*] 因而有x
n+1
≥x
n
(n>1),即数列{x
n
}单调增加。 由单调有界数列必有极限,知[*]x
n
存在。 设[*]x
n
=a,在x
n+1
=[*]两边取极限,得a=[*],解得a=3/2,a=0(舍去)。 故[*]x
n
=3/2。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/zRk4777K
0
考研数学二
相关试题推荐
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
利用复合函数求偏导的方法,得[*]
化二重积分为二次积分(写出两种积分次序).(1)D={(x,y)||x|≤1,|y|≤1}.(2)D是由y轴,y=1及y=x围成的区域.(3)D是由x轴,y=lnx及x=e围成的区域.(4)D是由x轴,圆x2+y2-2x=0在第一象限的部分及直线x
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
随机试题
PASSAGEONEWhatcanbeinferredfromthelastsentenceofthepassage?
A.低血糖反应B.妊娠后期糖尿病C.酮症酸中毒D.2型糖尿病E.血管神经性水肿胰岛素剂量不足或中断可引起
急性再生障碍性贫血的早期表现是()
常用的风险控制措施包括()。
赵某于2017年5月出售自有房屋一套,售价880万元,由于销售服务、无形资产或不动产的年应税销售额超过500万元,因此应当登记为一般纳税人。()
当代中国的立法体制的特色是()。
中国共产党的领导是人民当家做主和依法治国的根本保证。党领导人民治理国家的基本方略是()
设二维随机变量(X1,X2)的概率密度函数为f(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=)的概率密度函数f1(y1,y2)等于()
Everyprofessionortrade,everyart,andeverysciencehasitstechnicalvocabulary.Differentoccupations,however,differwid
_______strictshemaybe,sheiscertainlyaconsideratemanagerwhocaresheremployees’need.
最新回复
(
0
)