首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
admin
2014-07-22
145
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使
a
3
f"(η)=3∫
-a
a
f(x)dx.
选项
答案
(1)对任意x∈[-a,a], [*] 其中ξ在0与x之间. (2)[*] 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f"(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大、最小值,于是有 [*] 即[*] 因此,由f"(x)在[-a,a]上的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f"(η)=3∫
-a
a
f(x)dx.
解析
[分析] (1)直接套公式即可,f(x)的带拉格朗日余项的”阶麦克劳林公式为:
(2)的证明显然要用到(1)的结果,由于f(x)在区间[-a,a](a>0)上具有二阶连续导数,因此f"(x)一定存在最大和最小值,若对
进行估值后,发现介于f"(x)的最大值和最小值之间,则用介值定理即可完成证明.
[评注] 本题证明过程中得到的ξ与x有关,因此在(2)的证明过程中,干万不要误以为是常数,而由积分
直接得
于是推出a
3
f"(ξ)=3∫
-a
a
f(x)dx.
这样表面上似乎证明了结论,而实际上是错误的.有时为了明确起见,可将ξ记为ξ(x).
转载请注明原文地址:https://www.kaotiyun.com/show/FR34777K
0
考研数学二
相关试题推荐
过原点(0,0)向曲线Γ:作切线L,记切点为(x0,y0),由切线L、曲线Γ以及x轴围成的平面图形为D.试求切点(x0,y0)的数值,并写出切线L的方程;
微分方程xy′+y=0满足y|x=1=1的特解为__________.
下列函数在(一1,1)内可微的是().
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:曲线y=f(x)的下凸(或上凹)区间为________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于,(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形。
多项式中x3项的系数为________.
设级数的系数an满足关系式an=an-1/n+1-1/n,n=2,3,…,a1=2,则当|x|<1时,的和函数S(x)=________。
求级数的收敛域。
随机试题
需要考虑增加基牙数目的是
患者,女,27岁,1个月前产一女婴,2周前渐感颈前部疼痛,自觉吞咽时疼痛,无多汗、食欲差,甲状腺不大,右侧甲状腺区有一个1.0cm×0.5cm的结节,触痛。TT3250ng/dl,TT417.2μg/dl。哪项试验用于确诊效果最好
质量缺陷的处理概括起来应作好以下两大工作:()。
( )是指招标人在招标开始之前或者开始初期,由招标人对申请参加投标的潜在投标人资质条件、业绩、信誉、技术、资金等多方面的情况进行资格审查;经认定合格的潜在投标人,才可以参加投标。
下列不属于账务成果的计算和处理的是()。
彻底肃清氏族制残余,标志雅典国家的正式形成的事件是()。
设f(xz)的一个原函数为xnln(1+x),g(x)=,如果当x→0时,f(x)与g(x)是等价无穷小,则().
SSE2指令支持64位或128位整型数的运算,一条SSE2指令最多可以同时完成几对四字整型的加法运算?______。A)1B)2C)4D)8
A、 B、 C、 B
Mostcareersorganizationshighlightthreestagesforgraduatestofollowintheprocessofsecuringasuitablecareer..recogni
最新回复
(
0
)