首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( ).
设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( ).
admin
2020-02-28
92
问题
设向量组a
1
,a
2
,a
3
线性无关,则下列向量组中线性无关的是( ).
选项
A、a
1
+a
2
,a
2
+a
3
,a
3
-a
1
B、a
1
+a
2
,a
2
+a
3
,a
1
+2a
2
+a
3
C、a
1
+2a
2
,2a
2
+3a
3
,3a
3
+a
1
D、a
1
+a
2
+a
3
,2a
1
-3a
2
+2a
3
,3a
1
+5a
2
+3a
3
答案
C
解析
由题设,观察四个选项:
关于(A),由于(a
1
+a
2
)-(a
2
+a
3
)+(a
3
-a
1
)=0,
则a
1
+a
2
,a
2
+a
3
,a
3
-a
1
线性相关.
关于(B),由于(a
1
+a
2
)+(a
2
+a
3
)-(a
1
+2a
2
+a
3
)=0,
则a
1
+a
2
,a
2
+a
3
,a
1
+2a
2
+a
3
也线性相关.
关于(C),由定义,设有一组数k
1
,k
2
,
3
,
使得k
1
(a
1
+2a
2
)+k
2
(2a
2
+3a
3
)+k
3
(3a
3
+a
1
)=0
即(k
1
+k
3
)a
1
+(2k
1
+2k
2
)a
2
+(3k
2
+3k
3
)a
3
=0,
由已知a
1
,a
2
,a
3
线性无关,则
该方程组的系数矩阵的行列式为
从而k
1
=k
2
=k
3
=0,由此知(C)中向量组线性无关.
而由同样的方法,建立关于(D)中向量组相应的方程组,可计算出系数矩阵的行列式为0,则(D)中向量组线性相关.综上选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/zPA4777K
0
考研数学二
相关试题推荐
已知函数f(x)连续,且=1,则f(0)=_________。
求下列函数的极值:(1)z=x2-xy+y2+9x-6y+20(2)z=4(x-y)-x2-y2。(3)z=x3+y3-3xy(4)z=xy(a-x-y)(a≠0)
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,…,ξr,与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
求不定积分
求下列不定积分:
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-
随机试题
下面哪一种方法不能作为照明的正常节电措施?[2003年第112题]
因常压下液氨气化时蒸发热较大,故氨可作制冷剂。
气味芳香、成分易挥发的药物宜
A.0.75mg/mlB.200~500U/mlC.1500U/mlD.100U/ml~500U/mlE.2500U/ml青霉素皮试液的浓度是()
不能减免资源税的有()。
未来深海水下线缆的外皮是由玻璃而不是由特殊的钢材或铝合金制成的。原因是金属具有颗粒状的微观结构,在深海压力之下,粒子交结处的金属外皮易于断裂。玻璃外皮就不会有这种情况,因为玻璃看起来是固体,由于它在压力之下可以流动,所以可将之视为液体。以下哪项最有可能从上
下列描述中正确的是
Wheredidtuliporiginally,grow?
Towhatextentaretheunemployedfailingintheirdutytosocietytowork,andhowfarhastheStateanobligationtoensureth
Trafficstatisticspaintagloomypicture.Tohelpsolvetheirtrafficwoes,somerapidlygrowingUScitieshavesimplybuiltmo
最新回复
(
0
)