首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-
admin
2019-08-23
70
问题
设y=f(χ)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
(2)设f(χ)在(0,1)内可导,且f′(χ)>-
,证明:(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt, 即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0. 令φ(χ)=χ∫
1
χ
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ′(c)=0, 即cf(c)+∫
1
c
(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(χ)=χf(χ)-∫
χ
1
f(t)dt,因为h′(χ)=2f(χ)+χf′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EoA4777K
0
考研数学二
相关试题推荐
求极限100
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:(1)f(x)>0,x∈(a,b);(2)存在ξ∈(a,b),使得(3)存在与(2)中ξ不同的η∈(a,b),使得f’(η)(b2—a2)=
已知ξ=(0,1,0)T是方程组的解,求通解.
设u=f(x,y,xyz),函数z=z(x,y)由exyz=∫xyzh(xy+z-t)dt确定,其中f连续可偏导,h连续,求
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。[img][/img]若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为1
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记u(x,y)=求[img][/img]
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a,b为何值时,g(x)在x=0处可导。
积分=______。
随机试题
坚持党的基本路线不动摇,关键是()
A.活血行气,解郁清心B.活血行气,祛风止痛C.活血调经,凉血消痈D.活血行气,止痛E.活血祛瘀,润肠通便川芎具有的功效是
设备设计和采购过程的监理的资料是( )和往来文件。
在信用证业务中,银行的责任是______。
81.某初创企业的经营活动尚未产生盈利,且不断进行资本投资,也在不断募集大量资金,其现金流量结构特征最可能是()。
消除学生的习得性无力感的有()。
简述要约的概念和应当具备的条件。
下列关于软件著作权中翻译权的叙述不正确的是:翻译权是指(10)的权利。
Lookatthenotesbelow.Youwillheartwofriendstalkingaboutajobadvertisement.MessageMe
Readthearticlebelowaboutchangingattitudestocreativityintheworkplace,andthequestionsontheoppositepage.Foreach
最新回复
(
0
)