首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
admin
2013-09-15
795
问题
设三阶矩阵A的特征值为λ
1
=-1,λ
2
=0,λ
3
=1,则下列结论不正确的是( ).
选项
A、矩阵A不可逆
B、矩阵A的秩为零
C、特征值-1,1对应的特征值向量正交
D、方程组AX=0的基础解系含有一个线性无关的解向量
答案
C
解析
由λ
1
=-1,λ
2
=0,λ
3
=1得|A|=0,则r(A)<3,即A不可逆,(A)正确;又λ
1
+λ
2
+λ
3
=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/yn34777K
0
考研数学二
相关试题推荐
[2010年]若曲线y=x3+ax2+bx+1有拐点(-1,0),则b=_________.
(2017年)求极限
[2008年]如图1.3.3.2所示,曲线段方程为y=f(x),函数f(x)在区间[0,a]上有连续导数,则定积分等于().
[2012年]设连续函数z=f(x,y)满足则dz|(0,1)=__________.
(96年)设f(χ)=其中g(χ)有二阶连续导数,且g(0)=1,g′(0)=-1(1)求f′(χ);(2)讨论f′(χ)在(-∞,+∞)上的连续性.
(2000年)求微分方程y’’一2y’一e2x=0满足条件y(0)=1,y’(0)=1的解.
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
(2008年)设f(x)是周期为2的连续函数.(Ⅰ)证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数.
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积记为S,其中一条切线与抛物线相切于点A(a,a2)(a>0)。(Ⅰ)求S=SA的表达式;(Ⅱ)当a取何值时,面积SA最小?
设f(x)为正值连续函数且f(x)<a,a为正常数,则b∈(0,1),有()。
随机试题
求得最后的让步要把握的问题是()
大革命失败后,党的工作重心开始转向农村,在农村建立革命根据地,农村革命根据地能够在中国长期存在和发展的根本原因是()
带蒂皮瓣移植术适用于下列哪种类型的手外伤
关于回声强度的描述,不正确的是
多边开发银行统一版《施工合同条件》包括(),方便用户的理解和使用。
( )不是进度控制的合同措施。
酸奶容易消化吸收的原因是()。
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力、解决问题能力、语言表达能力的测试。 2.作答参考时限:阅读材料40分钟,作答110分钟。 3.仔细阅读给定的材料,按照后面提出的“申论要求”依次作答。二、给定材料
生产、销售有毒、有害食品罪是指在生产、销售的食品中掺人有毒、有害的非食品原料的,或者销售明知掺有有毒、有害的非食品原料的食品的行为。根据上述定义,下列构成生产、销售有毒、有害食品罪的是()。
窗体上有1个名称为Label1的标签;1个名称为List1且含有若干表项的列表框。为了使得单击List1中某个表项时,在Label1中相应地显示该表项,应使用的程序代码为()。
最新回复
(
0
)