首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+2y2—x2y2在区域D={(x,y)|x2+y2≤4,y≥0,x≥0}上的最大值和最小值。
求函数f(x,y)=x2+2y2—x2y2在区域D={(x,y)|x2+y2≤4,y≥0,x≥0}上的最大值和最小值。
admin
2018-12-29
50
问题
求函数f(x,y)=x
2
+2y
2
—x
2
y
2
在区域D={(x,y)|x
2
+y
2
≤4,y≥0,x≥0}上的最大值和最小值。
选项
答案
先求D内的驻点及相应的函数值,由 [*] 得f(x,y)在D内有一个驻点M[*]=2。 再求f(x,y)在D的边界上的最大值与最小值,D的边界由三部分组成: 一是线段Γ
1
:y=0,0≤x≤2,在Γ
1
上f(x,y)=x
2
(0≤x≤2),最小值为0,最大值为4。 二是线段Γ
2
:x=0,0≤y≤2,在Γ
2
上f(x,y)=2y
2
(0≤y≤2),最小值为0,最大值为8。 三是上半圆周Γ
3
:y
2
=4—x
2
(0≤x≤2),在Γ
3
上 f(x,y)=x
2
+2(4—x
2
)—x
2
(4—x
2
)=8—5x
2
+x
4
=[*]=h(x)(0≤x≤2), h′(x)=[*],由h′(x)=0得x=0或x
2
=[*],且 h(0)=8,[*],h(2)=4。 于是f(x,y)在D的边界上的最大值为8,最小值为0。 最后通过比较知f(x,y)在D上的最大值为8,最小值为0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yUM4777K
0
考研数学一
相关试题推荐
(91年)由方程所确定的函数z=z(x,y)在点(1,0,一1)处的全微分dz=_____.
(96年)函数u=在点A(1,0,1)处沿点A指向点B(3,一2,2)方向的方向导数为_______.
已知抛物线y=ax2+bx(其中a0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
求的极值.
求f(x,y)=(x一6)(y+8)在(x,y)处的最大方向导数g(x,y),并求g(x,y)在区域D={(x,y):x2+y2≤25)上的最大值、最小值.
求函数z=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0时,
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设L:y=sinx(0≤x≤),由x=0,L及y=sint围成的区域面积为S1(t);由L、y=sint及x=围成的区域面积为S2(t),其中0≤t≤.t取何值时,S(t)取最小值?t取何值时,S(t)取最大值?
随机试题
柳宗元有“文章巨公”和“百代文宗”之名。()
A.脂酰CoAB.烯酰CoAD.HMGCoAD.丙二酰CoA酮体合成的重要中间产物是
下列药物中,哪一味药除不能够治疗气虚欲脱证外.是人参的最佳代用品()
高压接触器的主要控制对象有( )。
《煤矿建设安全规范》AQ1083-2011规定,斜井串车提升运输时的提升速度不得超过()。
用CFRexship’shold术语成交一批通过程租船运输的大宗货物,在租船时,可按()装卸条件订立合同。
2017年全年,我国乘用车产量为2483.1万辆,同比增长2.1%,销量为2474.4万辆,同比增长1.9%。已知2018年3月我国乘用车产量为212万辆,则2018年一季度我国乘用车产量比上年同期
明代教育家王守仁认为,读书求学的目的在于()。
Bypersistentandsustainedpractice,anyoneandeveryonecanmaketheyogajourneyandreachthegoalofenlightenmentandfree
A、TheGreatHalloftheBullsis30metresinsidethecave.B、ThePaintedGalleryis20metreslong.C、TheLateralPassageisto
最新回复
(
0
)