首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2016-10-21
68
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
即证[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ>0.考察F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt, 若能证明F(χ)>0(χ∈(0,1])即可.这可用单调性方法. 令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(χ)在[0,1]可导,且 F(0)=0,F′(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 由条件知,f(χ)在[0,1]单调上升,f(χ)>f(0)=0(χ∈(0,1]),从而F′(χ)与g(χ)=2∫
0
χ
f(t)dt-f
2
(χ)同号.再考察 g′(χ)=2f(χ)[1-f′(χ)]>0(χ∈(0,1)), g(χ)在[0,1]连续,于是g(χ)在[0,1]单调上升,g(χ)>g(0)=0(χ∈(0,1]),也就有F′(χ)>0(χ ∈(0,1]),即F(χ)在[0,1]单调上升,F(χ)>F(0)=0(χ∈(0,1]).因此 F(1)=[∫
0
χ
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0. 即结论成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/yPt4777K
0
考研数学二
相关试题推荐
2
0
[*]
4/π
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
设偶函数f(x)的二阶导数f’’(x)在x=0的某邻域内连续,且f(0)=1,f"(0)=2,试证级数绝对收敛。
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则________。
设A为n阶可逆矩阵,则下列结论正确的是().
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
随机试题
只有()公差才有基准要素。
______hewasseriouslyill,Iwouldn’thavetoldhimthetruth.
上呼吸道感染的处理要点是
糖皮质激素治疗哮喘的主要机制是
A、骨疏康颗粒B、妙济丸C、活血止痛散D、养血荣筋丸E、颈复康颗粒治疗颈椎病引起的头晕,手臂麻木选用()
在保险活动中,投保人或被保险人对过去或现在某一特定事实的存在或不存在所做的保证称为()。
毫无疑问.在今日武断批判中医的人中,不乏以“科学”代言人自居者,将各种自己不懂的知识系统一棍子打死,归入_______。这种态度不能不使人怀疑其言论与知识的讨论无关,另有用意。不过.在抗拒这种学霸的同时,我们也不必非要陷入相反的_______。坦率地说,身
A、1,0B、C、D、2,-6D本题为隔项分组数列。奇数项9,6,1,(),构成二级等差数列,下一项应为1-7=-6;偶数项可转化为(),根号里面数字构成等比数列,故空缺项应为,即2。所以本题正确答案为D。
A.IwonderwhyyouwanttochangeB.IgiveittoyouforareasonC.comeonitStudent:CanIspeakwithyouforamoment?
以下叙述中正确的是
最新回复
(
0
)