首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为f(χ),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=-,记Z=X+Y,求E(Z),D(Z).
设随机变量X的概率密度为f(χ),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=-,记Z=X+Y,求E(Z),D(Z).
admin
2018-11-23
61
问题
设随机变量X的概率密度为f(χ),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρ
XY
=-
,记Z=X+Y,求E(Z),D(Z).
选项
答案
E(Z)=E(X+Y)=E(X)+E(Y)=∫
-∞
+∞
χ(χ)dχ+∫
-∞
+∞
yf(-y)dy. 令y=-χ,则∫
-∞
+∞
yf(-y)dy=∫
+∞
-∞
(-χ)f(χ)d(-χ)=∫
-∞
+∞
χf(χ)dχ. 所以E(Z)=0. 又D(Y)=E(Y
2
)-[E(Y)]
2
=E(Y
2
)-[-E(X)]
2
, 而E(Y
2
)=∫
-∞
+∞
y
2
f(-y)dy=∫
+∞
-∞
(-y)dy=∫(-χ)
2
(χ)d(-χ)=∫
-∞
+∞
χ
2
f(χ)dχ=E(X
2
), 所以D(Y)=E(Y
2
)-[-E(X)]
2
=E(X
2
)-[E(X)]
2
=D(X)=1. 于是D(Z)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[*].ρ
XY
=1+1+[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/y6M4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:(1)存在η∈(,1),使得f(η)=η;(2)对任意的k∈(—∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
求幂级数的收敛域,并求其和函数.
设二维随机变量(X,Y)在G=上服从均匀分布,则条件概率=_______
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3;Aα3=2α2+3α3.(1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B;(2)求A的特征值;(3)求一个可逆矩阵P,使得P
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
某厂生产的各台仪器,可直接出厂的占0.7,需调试的占0.3,调试后可出厂的占0.8,不能出厂的(不合格品)占0.2.现生产了n(n≥2)台仪器(设每台仪器的生产过程相互独立),求:(1)全部能出厂的概率;(2)恰有2台不能出厂的概率;
(12年)将长度为1m的木棒随机地截成两段,则两段长度的相关系数为
(88年)设4×4矩阵A=(αγ2γ3γ4),B=(βγ2γ3γ4),其中α,β,γ2,γ3,γ4均为4维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=______.
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.写出X的分布律;
随机试题
Youshouldbeableto______rightfromwrong.
经调查得甲乙两地的食管癌粗死亡率为43/10万,按年龄构成标化后,甲地食管癌标化死亡率为45/10万;乙地为49/10万,因此可以认为
迪比于2010年5月6日向河溪市基层人民法院起诉,称凯得拒不支付50吨苹果的运费2万元,并且合同约定的支付期间已于2009年8月届满。凯得应诉后提起反诉,称不支付该2万元是因为在2010年2月与迪比的一次买卖合同履行中,迪比交给自己的一批货物质量有问题又拒
结构防排水措施主要有()。
下列关于大额可转让定期存单的说法错误的是()。
依据一定的标准,运用科学方法,对教学进行价值判断,此活动属于()。
定义:①级差地租:指租佃较好土地的生产者向土地所有者缴纳的超额利润。②绝对地租:指由于土地私有权的存在,租种任何土地都必须缴纳的地租,即土地所有者凭借土地私有权的垄断所取得的地租。③垄断地租:级差地租和绝对地租以外的一种特殊的
根据图13-4请把(1)处的设备名称填写完整且填写(2)处传输介质名称。VOD一般是客户/服务器工作方式,根据图13-4请简要说出其工作流程。
关于交换式局域网的描述中,错误的是()。
Whendidthestoryhappen?
最新回复
(
0
)