首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,
admin
2019-08-23
49
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且f’(x)>
,证明:(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=一∫
1
c
f(t)dt,即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ’(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)一∫
x
1
f(t)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/y4c4777K
0
考研数学一
相关试题推荐
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足=e2xz,求f(u)。
设f(u,v)为二元可微函数,z=f(xy,yx),则=________。
设z=z(x,y)由方程z+ez=xy2所确定,则dz=________。
随机地向圆x2+y2=2x内投一点,该点落在任何区域内的概率与该区域的面积成正比,令X表示该点与原点的连线与x轴正半轴的夹角,求X的分布函数和概率密度。
已知曲线积分与路径无关,其中f(x)有连续一阶导数,f(0)=1,则∫(0,0)(1,1)yf(x)dx+[f(x)—x2]dy等于()
求幂级数的收敛区间,并讨论该区间端点处的收敛性。
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(—1,1,4,—1)T,α3=(5,—1,—8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
已知方程组有解,证明:方程组无解。
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设an=,证明{an}收敛。
球面x2+y2+z2=4a2与柱面x2+y2=2ax所围成立体体积等于()
随机试题
鸦片战争正式爆发的标志是
王某欠李某100元钱,借条上写明了还款时间,但王某到期未还钱。30个月后,李某要王某还钱,王某以时间已过为理由拒绝,王某所说的“时间已过”,属民法上的()。A.能够消灭债的原因B.约定的时间C.事件D.违反合同约定的时间
关于潜影形成的叙述,错误的是
球体x2+y2+z2≤4a2与柱体x2+y2≤2ax的公共部分的体积V=()。
某基础工程包含土方和混凝土两个子项工程,工程量清单中的土方工程量为4400m3,混凝土工程量为2000m3,合同约定:土石方工程综合单价为75元/m3,混凝土工程综合单价为420元/m3;工程预付款额度为合同价的15%,主要材料和构配件所占比重为60%。则
“桃李无言,下自成蹊”这句话所体现的德育方法是_______。
今天中国所面对的,不仅是计划经济到社会主义市场经济的________,更有整个社会伴随新型工业化、信息化、城镇化、农业现代化的全面转型。这样的背景下,零敲碎打、________解决不了治理难题,只有在全面深化改革的联动和集成中完善治理,在“立治有体,施治有
下列对中共一大主要内容的描述不正确的有()。
A、 B、 C、 D、 C
下面控件中,没有Caption属性的是()。
最新回复
(
0
)