首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
设二维随机变量(X,Y)的概率密度为 问X与Y是否独立?|X|与|Y|是否独立?
admin
2016-04-11
55
问题
设二维随机变量(X,Y)的概率密度为
问X与Y是否独立?|X|与|Y|是否独立?
选项
答案
关于X的边缘密度为f
X
(x)=∫
-∞
+∞
f(x,y)dy.若|x|≥1,则f
X
(x)=0;若|x|<1,则f
X
(x)=[*] 关于Y的边缘密度为f
Y
(y)=∫
-∞
x
f(x,y)dx [*] 即X与y不独立. 而(|X|,|Y|)的分布函数为F(x,y)=P(|X|≤x,|y|≤y} 当x≤0或y≤0时,f(x,y)=0; 当x≥0,y≥0时,F(x,y)=p{-x≤X≤x,-y≤Y≤y}=∫
-x
x
du∫
-y
y
f(u,v)dv. 当x≥1,y≥1时,F(x,y)=∫
-1
1
du∫
-1
1
[*]=1; 当0<x≤1,y≥1时,F(x,y)=∫
-x
x
du∫
-1
1
[*]dv=x; 当x≥1,0<y≤1时,F(x,y)=∫
-1
1
du∫
-y
y
[*]dv=y; 当0<x<1,0<y<1时,F(x,y)=∫
-x
x
du∫
-y
y
[*]dv=xy。 [*] 于是,关于|X|的(边缘)分布函数为: [*] 而关于|Y|的(边缘)分布函数为: [*] 可见F
|X|
(x).F
|Y|
(x,y)=F(x,y)[*](x,y)∈R
2
,即|X|与|y|相互独立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xww4777K
0
考研数学一
相关试题推荐
试求曲线115的拐点,并证明:不论常数a取异于零的何数值,这些拐点总是在一条直线上.
设函数f(x)在(0,+∞)内连续,,且对所有x,t∈(0,+∞),满足条件∫1stf(u)du=t∫1xf(u)du+x∫1tf(u)du,求f(x).
设x与y均大于0.且x≠y,证明:.
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
求z=x2-2y2+2x+4在区域x2+4y2≤4上的最小值和最大值.
设A,B是2阶矩阵,且A相似于B,A有特征值λ=1,B有特征值μ=-2,则|A+2AB-4B-2E|=____________.
利用变量替换u=x,v=y/x,可将方程化成新方程为().
微分方程yy”-y’2=y4满足初始条件y(0)=1,y’(0)=1的特解是________.
过曲面=4上任一点的切平面在三个坐标轴上的截距的平方和为().
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
细菌群体生长的生长曲线可分为_________、________、________和________四个时期,细菌的各种性状均较典型的是在________期。
在健康教育评估中,可以导致偏倚的因素有()
室温过高时,人体会
细水雾灭火系统喷头的最低设计工作压力不应小于()。
LOF是普通的开放式基金增加了交易所的交易方式。它可以是指数型基金,也可以是主动管理型基金。()
2004年1月某企业发行一种票面利率为6%、每年付息一次、期限3年、面值100元的债券。假设2004年1月至今的市场利率是4%。2007年1月,该企业决定永久延续该债券期限,即实际上实施了债转股,假设此时该企业的每股税后盈利是0.50元,该企业债转股后的股
下列各项中,应计入企业自行开发并依法申请取得无形资产入账价值的有( )。
时下“大师”___________,明星闪耀,却___________,真假难辨。有的靠假造学历,伪造历史,抄袭剽窃和自我炒作,混迹文坛;有的以“大师”“泰斗”自居,靠蛮横扯旗称霸。填入画横线部分最恰当的一项是()。
Joyce:Couldyoupassmethesugar?Larry:Sure.______
Overthepastdecade,theenvironmentalmovementhasexplodedontothemindofmainstreamconsumers,afactnotlostonmarketer
最新回复
(
0
)