首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
设A是n阶反对称矩阵, (Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
admin
2022-04-08
87
问题
设A是n阶反对称矩阵,
(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵;
(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;
(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
选项
答案
(Ⅰ)按反对称矩阵定义:A
T
=一A,那么 |A|=|A
T
|=|—A|=(—1)
n
|A|,即[1—(—1)
n
]|A|=0. 若n=2k+1,必有|A|=0.所以A可逆的必要条件是n为偶数. 因A
T
=一A,由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(一A)
*
. 又因(kA)
*
=k
n—1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(—1)
2k
A
*
=A
*
, 即A
*
是对称矩阵. (Ⅱ)例如,A=[*]是4阶反对称矩阵,且不可逆. (Ⅲ)若λ是A的特征值,有f λE—A J=0,那么 |—λE—A|=|(一λE—A)
T
|=|—λE—A
T
|=|—λE+A| =|一(λE—A)|=(一1)
n
|λE—A|=0, 所以一λ是A的特征值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DBf4777K
0
考研数学二
相关试题推荐
已知函数y=f(x)对一切的x满足矿xf’’(x)+3x[f’(x)]2=1一e-x,若f’(x0)=0(x0≠0),则()
线性方程组则()
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f’’(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
考虑二元函数的下面4条性质:①f(χ,y)在点(χ0,y0)处连续;②f(χ,y)在点(χ0,y0)处的两个偏导数连续;③f(χ,y)在点(χ0,y0)处可微;④f(χ,y)在点(χ0,y0)处两个偏导数存在
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
随机试题
菜肴是由一定的________构成的。
Myfatherwas【C1】______astrongmanwholovedbeingactive,butaterribleillness【C2】______allthataway.Nowhecannolonge
根据《工程监理企业资质管理规定》,工程监理企业的资质等级划分是( )。
【背景资料】某钢厂将一条年,100万t宽厚板轧制生产线的建设项目,通过招标方式.确定该项目中的板坯加热炉车间和热轧制车间交由冶金施工总承包一级资质的企业实施总承包,负责土建施工,厂房铜结构制作、安装,车间内300t桥式起重机的安装,设备安装与调试,三电-
保险代理机构、保险代理分支机构及其业务人员的展业行为由( )监督。
关于个人汽车贷款业务,下列说法错误的是()。
针对财务报表报出后知悉的事实,下列应对措施中,恰当的有()。
设二次型f(x1,x2,x3)在正交变换为x=Py下的标准形为2y12+y22一y32,其中P=(e1,e2,e3),若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qs下的标准型为()。
“函”就是信,不具有正式公文的法定效力。()
无效劳动合同,指当事人违反法律、行政法规的规定,订立的不具有法律效力的劳动合同。它虽是办事人双方协商订立的,但经国家规定的专门机构认为无效合同后,国家则不予确认,法律不予保护。根据以上定义,下述哪种行为是典型的无效劳动合同?()。
最新回复
(
0
)