首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-(b)
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-(b)
admin
2015-06-30
65
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f’
+
(a)f’
-
(b)<0.证明:存在∈(a,b),使得f’(ξ)=0.
选项
答案
不妨设f’
+
(a)>0,f’
-
(b)<0,根据极限的保号性,由f’
+
(a)=[*]>0,则存在δ>0(δ
0,即f(x)>f(a), 所以存在x
1
∈(a,b),使得f(x
1
)>f(a). 同理由f’
-
(b)<0,存在x
2
∈(a,b),使得f(x
2
)>f(b). 因为f(x)在[a,b]上连续,且f(x
1
)>f(a),f(x
2
)>f(b),所以f(x)的最大值在(a,b) 内取到,即存在ξ∈(a,b),使得f(ξ)为f(x)在[a,b]上的最大值,故f’(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xw34777K
0
考研数学二
相关试题推荐
作自变量替换把方程变换成y关于t的微分方程,并求原方程的通解.
微分方程y"一3y’+2y=2ex满足的特解为______.
设偶函数f(x)在x=0的邻域内二阶连续可导,且f(0)=1,f"(0)=4.证明:绝对收敛.
设由曲线,nπ≤x≤(n+1)π,n=1,2,3,…与x轴所围成区域绕y轴旋转所得的体积为vn,并记以其为通项的数列为{1},则下列说法正确的是()。
设总体X的概率分布如下从总体中抽取n个简单的样本,N1表示n个样本中取到-1的个数,N2表示n个样本中取到0的个数,N3表示n个样本中取到1的个数,则N1与N2的相关系数为()。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
根据下列条件,进行回答。任取x0>0,令xn=2ln(1+xn-1)(n=1,2,…),证明存在,并求其值。
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1讨论f’(x)在(-∞,+∞)上的连续性。
讨论函数在点x=0,x=1,x=2处的连续性与可导性.
设A,B满足A*BA=2BA-8E,且A=,求B.
随机试题
资本主义扩大再生产的重要源泉是【】
A,1.27~2.35kPaB,2.94kPaC,2.94~4.90kPaD,2.45kPaE,1.76kPa正常门静脉压力的平均值是
A.水及食物传播B.飞沫传播C.性传播D.接触传播E.虫媒传播志贺菌可经
40岁妇女,因阴部有一块状物脱出就诊。妇科检查见宫颈与部分宫体外露于阴道口,宫颈较长。本例正确治疗措施应是
热值仪间与混合间门、窗之间的距离不应小于()m。
背景某机场建设项目指挥部,通过招投标程序与某施工单位(总承包方)按照《建设工程施工合同(示范文本)》(GF—2013—0201)签订了施工合同。合同总价款5244万元,采用固定总价合同一次性包死,合同工期400d。施工中发生了以下事件:事件一:发包方
下列对物流系统的说法正确的是()。
_________是目前仅见的一份明代琵琶谱。
A=TheImperialPalaceB=TheTempleofHeavenC=PotalaPalaceD=JokhangTempleWhichpalaceortemple...isthespiritualce
WhenwasDisneylandcompleted?ItwascompletedonJuly,______
最新回复
(
0
)