首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
admin
2018-06-27
80
问题
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f
(n+1)
(x)≡0,f
(n)
(x)≠0.
选项
答案
由带拉格朗日余项的n阶泰勒公式得 f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
+[*]x
n+1
. 若f
(n+1)
(x)≡0,f
(n)
(x)≠0,由上式[*] f(x)=f(0)+f’(0)x+…+[*]f
(n)
(0)x
n
是n次多项式. 反之,若f(x)=a
n
x
n
+a
n-1
x
n-1
+…+a
1
x+a
0
(a
n
≠0)是n次多项式,显然 f
(n)
(x)=a
n
n!≠0,f
(n+1)
(x)≡0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/xik4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
设函数f(f)在[0,+∞)上连续,且满足方程,求f(t).
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
已知曲线在直角坐标系中由参数方程给出:证明该方程确定连续函数y=y(x),x∈[0,+∞);
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
随机试题
温经汤与生化汤组成中所共有的药物是
IgA肾病最典型的临床表现是
患者男,45岁,干部。因“急起疑人害,言语零乱3周”入院。入院体格检查以及生化检查均正常。既往体健。该患者考虑的诊断可能是
属于化痰药,又为止呕要药,多用于胃气上逆呕吐的药物是
欲对有200个数据的定量资料编制频数分布表描述其分布特征,在分组时,其组段数宜选择
房地产市场分析可以帮助开发商()。[2009年考题]
下列关于设备及工器具购置费的描述中,正确的是( )。
对于不真实、不合法的原始凭证,会计人员有权不予受理;对记载不正确、不完整的原始凭证予以退回。()
马克思主义哲学解决哲学基本问题的出发点是()。
Mostpeoplehaveanintuitive【C1】______ofwhatintelligenceis,andmanywordsintheEnglishlanguagedistinguish【C2】______diff
最新回复
(
0
)