首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
admin
2019-08-11
73
问题
n维向量组(Ⅰ)α
1
,α
2
,…,α
s
和(Ⅱ)β
1
,β
2
,…,β
t
等价的充分必要条件是
选项
A、r(Ⅰ)=r(Ⅱ),并且s=t.
B、r(Ⅰ)=r(Ⅱ)=n.
C、r(Ⅰ)=r(Ⅱ),并且(Ⅰ)可以用(Ⅱ)线性表示.
D、(Ⅰ)和(Ⅱ)都线性无关,并且s=t.
答案
C
解析
(Ⅰ)与(Ⅱ)等价的充分必要条件是r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ).
选项A缺少条件r(Ⅰ,Ⅱ)=r(Ⅰ).
选项B是(Ⅰ)与(Ⅱ)等价的一个充分条件,但是等价并不要求向量组的秩达到维数.
选项D(Ⅰ)和(Ⅱ)都无关不能得到它们互相可以线性表示,例如
(Ⅰ):α
1
=(1,0,0,0),α
2
=(0,1,0,0),(Ⅱ):β
1
=(0,0,1,0),设β
2
=(0,0,0,1).
(Ⅰ)和(Ⅱ)都无关,并且s=t=2,但是(Ⅰ)和(Ⅱ)不等价.
选项C(Ⅰ)可以用(Ⅱ)线性表示,则r(Ⅱ)=r(Ⅰ,Ⅱ).
转载请注明原文地址:https://www.kaotiyun.com/show/wfN4777K
0
考研数学二
相关试题推荐
(1)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA;(2)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请同是否必有AB~BA?说明理由.
求由方程2x2+2y2+z2+8xz-z+8=0所确定的函数z(x,y)的极值.
设向量组(Ⅰ)α1,α2,α3,α4线性无关,则和(Ⅰ)等价的向量组是()
设n为正整数,f(x)=xn+x-1.证明对于给定的n,f(x)在区间(0,+∞)内存在唯一的零点xn;
设函数y(x)在区间[1,+∞)上具有一阶连续导数,且满足y(1)=及x2yˊ(x)+∫1x(2t+4)yˊ(t)dt+2∫1xy(t)dt=,求y(x).[img][/img]
设f(x)在(-∞,+∞)上连续,下述命题:①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数;②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则f(x)必是偶函数;③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βa线性表示,则
随机试题
(Ⅰ)设f(χ)=4χ3+3χ2-6χ,求f(χ)的极值点;(Ⅱ)设有χ=∫0ydt,它的反函数是y=y(χ),求y=y(χ)的拐点.
简述国际商务活动中银行担保的种类。
公民的肖像权不包括以下内容()
男性,35岁,驾车肇事,右髋致伤剧痛。检查:见右下肢短缩,内旋、内收位弹性固定。右足不能背屈。为明确诊断应首先提出的检查
急性肾衰竭病人如何做好健康指导?
方中不含有生姜、大枣的方剂是()
依照我国法律的规定,下列哪些合同必须适用我国法律?
遇有()级及以上的大风,禁止从事高处作业。
喷射混凝土的施工要点有()。
甲公司应确认的债务重组损失为( )万元。假如乙公司2008年实现利润总额110万元,乙公司应确认的利息费用为( )万元。
最新回复
(
0
)