首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记 写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记 写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
admin
2014-04-23
48
问题
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记
写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
选项
答案
因[*]故f的矩阵表达式为: [*] =(一1)
n
|A|x
T
A
-1
x=(一1)
n
x
T
|A|A
-1
x=(一1)
n
x
T
A
*
x. 由A是正定矩阵知,|A|>0,且A的特征值λ
i
>0(i=1,2,…,n).A
*
的特征值为[*]故A
*
也是正定矩阵,故当n=2k时,f=(一1)
2k
x
T
A
*
x=x
T
A
*
x是正定二次型;当n=2k+1时,f=(一1)
2k+1
x
T
A
*
x=一x
T
A
*
x是负定二次型.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wV54777K
0
考研数学一
相关试题推荐
求空间曲线在xOy面上的投影曲线方程.
设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设A,B为n阶矩阵,且A,B等价,则下列结论正确的是().
曲线的斜渐近线为________________.
设函数f(x)在区间[0,1]上二阶可导,f(0)=0,且f(1)=1,证明:存在x0∈(0,1),使得f’(x0)=1;
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
设f(x)在(-∞,+∞)内连续,以T为周期,证明:∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数)。
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.Y=1时X的条件期望;
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
随机试题
原发性肝癌首选和最有效的方法是
患者,女,33岁。有反复发作尿频、尿急、尿痛史,肾区叩击痛(+),对其进行保健指导内容不正确的是
下列对恶性组织细胞病具有重要意义的细胞是
若从中选取3个案例作为可比实例,则下面四组中,第()组可以作为可比实例。若对各案例测算出的比准价格结果按简单算术平均结果处理,则按市场比较法计得估价对象估价结果为()。元/m2。
在分类所得税制度下,为控制税源,所得税的征收常采用( )的形式。
中央银行的业务活动特征不包括()。
对投资性房地产的后续计量,下列说法中不正确的有()。
______wearrivedinamoreurbanarea:whereJimtookmetoaplacecalledBostonMarket.
TheimmigrantsinAmericaareplayinganimportantroleinthenationalsciencedevelopment.Mr.Obamasaysthatpartofthesol
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
最新回复
(
0
)