首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
admin
2017-12-29
95
问题
已知函数z=f(x,y)的全微分出=2xdx — 2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x
2
+
≤1}上的最大值和最小值。
选项
答案
根据题意可知[*]=— 2y,于是f(x,y)=x
2
+C(y),且 C’(y)=—2y,因此有C(y)=— y
2
+C,由f(1,1)=2,得C=2,故 f(x,y)=x
2
一y
2
+2。 令[*]=0得可能极值点为x=0,y=0。且 [*] △=B
2
—AC =4>0,所以点(0,0)不是极值点,也不可能是最值点。 下面讨论其边界曲线x
2
+[*]=1上的情形,令拉格朗日函数为 [*] 得可能极值点x=0,y=2,λ=4;x =0,y=—2,λ=4;x=1,y=0,λ=—1;x =—1,y=0,λ=—1。 将其分别代入f(x,y)得,f(0,±2)=一2f(±1,0)=3,因此z=f(x,y)在区域D={(x,y)|x
2
+[*]≤1}内的最大值为3,最小值为—2。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wUX4777K
0
考研数学三
相关试题推荐
积分=()
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
设P(A)>0,P(B)>0.证明:A,B互不相容与A,B相互独立不能同时成立.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
已知,2阶方阵A满足矩阵方程A2一3A一2E=O.证明:A可逆,并求出其逆矩阵A-1.
一商家销售某种商品的价格满足关系p=7—0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
设D是由直线x=一2,y=0,y=2以及曲线x=所围成的平面域,则
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
随机试题
万某为设立某人用药品加工企业,向市卫生局提供虚假材料申请卫生许可,卫生局向其颁发了卫生许可证。万某在领取卫生许可证后向工商局办理了企业登记。市卫生局在复查时发现了其通过欺骗手段获得卫生许可的情形。对此,下列说法中正确的是:()
以“受人之托,代人理财”为基本特征的金融业务是________。
在Windows7的应用程序窗口中,选中末尾带有省略号的菜单项意味着()
血栓闭塞性脉管炎好发于
女,20岁,主诉:前牙牙缝变大1年。检查:上切牙松动、移位。双侧上下第一磨牙松动Ⅱ度。如果全身药物治疗,最佳选择是
黄金投资的方式有()。
教学时遵循循序渐进原则有哪些要求?
【2014山东省属】教学是教儿童,不是单纯教教材,要展开真正的学习,儿童必须参与教学过程。有意义的学习只有在教材同学生自身的目的发生关系,由学生去认知时,才能产生。持这一主张的是()。
Ifyouarewordedaboutthingsandareunderalotofstressatworkorschool,thenyouareprobablynotsleepingwell.Worryc
Afterits【L1】______tothe【L2】______in2001,Chinahastakenstepstowardsopeningupits【L3】______.Asaconditionforjoiningt
最新回复
(
0
)