首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2019-07-22
50
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0,整理得(xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy-2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wLN4777K
0
考研数学二
相关试题推荐
求
设函数y=y(χ)由方程eχ+y+cos(χy)=0确定,则=_______.
当n→∞时-e是的
设n维行向量α=(,0,…,0,),A=E-αTα,B=E+2αTα,则AB为().
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设函数其中f(x)在x=0处二阶可导f”(0)≠0,f’(0)=0,f(0)=0,则x=0是F(x)的()
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
下列反常积分中发散的是
设A,B是同阶方阵.若A,B相似,试证A,B有相同的特征多项式;
随机试题
具有音乐造诣的人听音乐时会产生相应的视觉。这种现象属于【】
一般体力活动明显受限,步行1~2个街区,登楼一层引起心绞痛是一般体力活动轻度受限,快步、饭后、寒冷或刮风中、精神应激或醒后数小时内步行或登楼,步行1~2个街区,登楼一层引起心绞痛是
3个月婴儿,冬季出生,人工喂养,近日来夜啼,睡眠不安。头部多汗,查体可见枕秃,未见骨骼畸形,X线无异常。该患儿应考虑为
2015年1月,甲公司与乙公司签订劳务派遣协议,派遣刘某到乙公司从事临时性工作。2015年5月,临时性工作结束,两公司未再给刘某安排工作,也未再向其支付任何报酬。2015年7月,刘某得知自2015年1月被派遣以来,两公司均未为其缴纳社会保险费,遂提出解除劳
某次认知能力测试,刘强得了118分,蒋明的得分比王丽高,张华和刘强的得分之和大于蒋明和王丽的得分之和,刘强的得分比周梅高;此次测试120分以上为优秀,五人之中有两人没有达到优秀。根据以上信息,以下哪项是上述五人在此次测试中得分由高到低的排列?()
下列选项中,对于开发网络安全产品体系描述正确的有()。
(2013联考36)负面新闻并不是永远都制造_______,从商业角度看,负面宣传在某种情况下可以_______销售,尤其在公司和产品不知名的情况下。曾有研究者发现,如果某些书籍的作者让读者感觉_______,书被评为劣作却能达到相反的效果——它们的销售增
EveryonecomplainsthatcorporateAmericais【C1】______tohireadditionalworkers.Far【C2】______attentionhasbeenpaidtothefl
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。为了更好地控制教材编写的内容、质量和流程,小李负责起草了图书策划方案(请参考“图书策划方案.docx”文件)。他需要将图书策划方案Wor
Nancy’sgonetoworkbuthercar’sstillthere.She______bybus.
最新回复
(
0
)