首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
admin
2019-09-27
65
问题
设齐次线性方程组
其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
选项
答案
D=[*]=[a+(n-1)b](a-b)
n-1
. (1)当a≠b,a≠(1-n)b时,方程组只有零解; (2)当a=b时,方程组的同解方程组为x
1
+x
2
+…+x
n
=0,其通解为 X=k
1
(-1,1,0,…,0)
T
+k
2
(-1,0,1,…,0)
T
+…+k
n-1
(-1,0,…,0,1)
T
(k
1
,k
2
,…,k
n-1
为任意常数); (3)令A=[*],当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1)
T
为方程组的一个解,故方程组的通解为k(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/wIS4777K
0
考研数学一
相关试题推荐
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,β3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=_______.
设,Q为三阶非零矩阵,且PQ=0,则().
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a—δ,a+δ)时,必有()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中,(1)A2。(2)P-1AP。(3)AT。(4)E-A。α肯定是其特征向量的矩阵共有()
函数f(x,y)﹦2x2﹢ax﹢6xy2﹢2y在点(1,-1)取得极值,则ab﹦______。
设随机变量(X,Y)服从二维正态分布,其边缘分布分别为X~N(2,4),Y~N(3,6),X与Y的相关系数为pXY﹦,且概率P{aX﹢bY≤1}﹦,则()
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一∫0xf(t)dt=0·证明:当x≥0时,e-x≤f(x)≤1.
已知证明A与B合同.
设z=z(x,y)有二阶连续偏导数,且满足,若有z(x,2x)=x,z′1(x,2x)=zx(x,y)|y=2x=x2,求z″11(x,2x)与z″12(x,2x)。
随机试题
从造字法来看,“瓜、册、面、肉”都属于_____造字法。
“垃圾邮件”是指批量发送的未征得收信人同意的电子邮件,下面有关垃圾邮件的描述中正确的是()。
A/叶酸B/维生素B6C/维生素B12D/维生素CE/维生素D可与钙剂合用用于防治佝偻病的维生素为
疳积与食积的主要区别是
既可解表又可除烦的药物是()。
首先提出普及教育的思想,并详细论证班级授课制的教育著作是()。
国际关系的一个基本事实是,当守成超级大国与崛起世界强国两大巨人相遇,其关系注定是极其_________而又非常_________的,二者之间的战略困境有可能因国际权力转移而加剧。填入划横线部分最恰当的一项是:
无论是竞争性厂商,还是垄断性厂商,只有在______时才扩大产出。()
设=_______.
Whichofthefollowingisthemostappropriatetitleforthepassage?Accordingtotheauthor,whichofthefollowingisNOTtr
最新回复
(
0
)