首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)设a=3,α4是与α1,α2,α3都正交的非零向量,
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)设a=3,α4是与α1,α2,α3都正交的非零向量,
admin
2018-11-16
67
问题
设α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
。
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量。
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3 [*] 得a=-3。 (Ⅱ)与α
1
,α
2
,α
3
都正交的非零项向量即齐次方程组[*]的非零解,解此方程组: [*] 解得α
4
=c(19,-6,0,1)
T
,c≠0。 (Ⅲ)只用证明α
1
,α
2
,α
3
,α
4
线性相关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示。 方法一:由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示,用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则(α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0,得α
4
=0,与α
4
是非零向量矛盾。 方法二:计算行列式 [*] 于是α
1
,α
2
,α
3
,α
4
线性无关。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/w8W4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为________.
设λ0为A的特征值.证明:AT与A特征值相等;
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
设二维随机变量(X,Y)的联合密度为f(x,y)=求X,Y的边缘密度,问X,Y是否独立?
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
arctane一π/4.分母提取因子n,再使用定积分定义求之.=arctanex|01=arctane一π/4.
[*]积分区域为圆域的一部分,被积函数又为f(x2+y2)的形式,应用极坐标系计算.所给二次积分的积分区域为它为圆域x2+y2≤a2在第一象限的1/2,即D={(r,θ)10≤r≤a,0≤θ≤π/4).应改换为极坐标系计算:
设总体X的概率分布为其中θ(0<θ<)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3。求θ的矩估计和最大似然估计值。
求使得不等式在区域D=|(x,y)|x>0,y>0|内成立的最小正数A与最大负数B.
设函数f(χ)在(0,+∞)上可导,f(0)=0,且其反函数为g(χ).若∫0f(χ)g(t)dt=χ2eχ,求f(χ)=_______.
随机试题
被公认为“大历十才子”之冠的是【】
关于外科患者手术后应用TNA,下列说法错误的是()。
属于骨折全身表现的是
患者身目发黄,黄色鲜明,腹部痞满,肢体困重,便溏尿黄,身热不扬,舌红苔黄腻,脉濡数。其证候是
涡轮流量计是近年来迅速发展起来的一种新型速度式流量计,以下关于其特点叙述错误的为()。
某场地地基土为一强透水层,含水量ω=22%,地下水分析成果pH=5.4,侵蚀性CO2含量为53.9mg/L,请判定该地下水对混凝土结构的腐蚀性属于下列()等级。[2005年真题]
我国民事诉讼法确定级别管辖的根据不包括()。
采用简化分批法,在各批产品完工以前,产品成本明细账()。
我国第一部系统的法典是()。
连某因犯诈骗罪被判处无期徒刑,附加剥夺政治权利终身;犯故意伤害罪被判处10年有期徒刑,附加剥夺政治权利3年。在数罪并罚时,应当采用( )。
最新回复
(
0
)