首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
admin
2016-10-13
87
问题
设向量组α
1
,α
2
,…,α
n—1
为n维线性无关的列向量组,且与非零向量β
1
,β
2
正交.证明:β
1
,β
2
线性相关.
选项
答案
令A=[*],因为α
1
,α
2
,…,α
n
与β
1
,β
2
正交,所以Aβ
1
=0,β
1
=0,即β
1
,β
2
为方程组AX=0的两个非零解,因为r(A)=n一1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/w6u4777K
0
考研数学一
相关试题推荐
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
证明下列极限都为0;
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
随机试题
天南星的功效是
铅的原子量为207,测得接触者血液中铅的浓度为400μg/L,若用btmol/L表示,应为
进行肠肝循环的是
尿毒症患者发生纤维性骨炎的主要原因是
某公司2010年末的流动资产合计为800万元,其中包括存货360万元;流动负债合计为200万元。则该公司2010年末的速动比率为()。
在中国共产党领导下,中国人民真正掌握了自己的命运。从根本上看,这体现在()。
华盛顿会议上,对中国影响最大的是()。
下列关于职业道德的说法中,正确的是()。
人工智能是指由人工制造出来的系统所表现出来的智能。人工智能的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。下列论述中所描述的各项技术突破,无关人工智能的是()。
A、HewasamanfullofresponsibilityforGermancitizens.B、Hewasamanwithlittlecouragetofacethethreatofwar.C、Hewa
最新回复
(
0
)