首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,19)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(x)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面积在数值上等于其体积的2倍,
(2008年试题,19)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(x)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面积在数值上等于其体积的2倍,
admin
2013-12-18
75
问题
(2008年试题,19)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(x)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式.
选项
答案
旋转体的体积为[*]旋转体的侧面积为[*]由题意[*]可得[*]两边求导得[*]又f(0)=1,则f(t)不恒等于零.故[*]f(t),平方得1+[f
’
(t)]
2
=f
2
(t),再对两边求导2f
’
(t)f
’’
(t);2f
’
=(t)f(t),即f
’’
(t)=f(t)因而其特征方程为λ
2
—1=0,特征根λ
1
λ
2
=±1,则通解为f(t)=C
1
e
t
+C
2
e
-t
.又1+[f
’
(t)]
2
=f
2
(t),则C
1
C
2
=[*]所以[*]再由f(0)=1,得[*]故曲线方程为[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/w234777K
0
考研数学二
相关试题推荐
(89年)设X为随机变量且EX=μ,DX=σ2.则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.
[2013年]设函数z=z(x,y)由方程(z+y)x=xy确定,则
(2008年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
[2018年]设函数f(x)在[0,1]上二阶可导,且则().
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
设α为n维单位向量,E为n阶单位矩阵,则()
(01年)设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定:eχy-χy=2,eχ=求.
(2006年)设函数f(x)在x=0处连续,且,则()
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
(2010年)若=1,则a等于()
随机试题
聚氯乙烯可用于食品的包装。()
在Excel中,图表和数据表放在一起的方法,称为()。
明代戏曲家汤显祖的代表作品是()
多器官功能障碍综合征(multipleorgandysfunctionsyndrome,MODS)
心痛患者,心痛彻背,背痛彻心,气短心悸,感寒痛甚,四肢不温,冷汗出,舌苔薄白,脉紧。其证候是
沥青混凝土防渗墙工程,沥青混凝土现场铺筑试验的主要目的有()。
导游人员在旅程中应采取哪些有效的措施以防止治安事故的发生?
自我服务偏差(self-servingbias)的主要成因是()。
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
Vacation(休假)timecanbeassimpleasjusttimeawayfromwork.Youmayjustwantto【C1】______homeanddonothing.Thereisnothi
最新回复
(
0
)