首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为( )
admin
2019-01-06
86
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=O,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
3
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关。所以选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,选项A不正确;显然,选项B中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,选项B不正确;而选项D中的向量组含有四个向量,不是基础解系,所以选型D也不正确。
转载请注明原文地址:https://www.kaotiyun.com/show/vpW4777K
0
考研数学三
相关试题推荐
设矩阵不可对角化,则a=___________.
设离散型随机变量X的概率函数为P{X=i}=pi+1,i=0,1,则p=__________.
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
假设随机事件A与B相互独立,求a的值.
求其中D是由曲线xy=2,直线y=x一1及y=x+1所围成的区域.
(97年)一商家销售某种商品的价格满足关系P=7-0.2χ(万元/吨),χ为销售量(单位:吨),商品的成本函数是C=3χ+1(万元)(1)若每销售一吨商品,政府要征税t(万元),求该商家获最大利润时的销售量;(2)t为何值时,政府税收总
(90年)曲线y=χ2与直线y=χ+2所围成的平面图形面积为_______.
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫0xf(t)dt.求证:(1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数.(2)∫0Tf(x)dx.
求解微分方程满足条件y(0)=0的特解.
随机试题
女性,58岁,因外阴瘙痒2年就诊。妇科检查:外阴大小阴唇1/2区及会阴后联合处色素减退,局部皮肤增厚、粗糙。外阴活检报告为“表皮角化过度,棘皮:层不规则增厚,上皮脚向下延伸,非典型增生占表皮深部下2/3层。”
在RLC串联电路中,电容C可调,已知R=500Ω,L=60mH,要使电路对f=2820Hz的信号发生谐振,C值应调到()。
节能中长期专项规划中提出的节能的重点领域包括()。
生产准备费是与未来企业生产经营有关的其他费用,包括()。
下列各项税费中,不通过“营业税金及附加”科目核算的有()。
并购重组委委员在审核时,并购重组委委员应当在工作底稿上填写个人审核意见,对此,下列说法正确的是( )。
评估企业价值的市盈率模型,除了受企业本身基本面的影响以外,还受到整个经济景气程度的影响。在整个经济繁荣时市盈率上升,整个经济衰退时市盈率下降。()
下列能正确反映原子核的人工转变的方程是()
伏尔泰说过:“真正让人疲惫的不是面前的高山,而是鞋里的一粒沙。”对此请谈谈你的理解。
我们把教室打扫得干净而又整齐。
最新回复
(
0
)