首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列矩阵中,不能相似对角化的矩阵为( )
下列矩阵中,不能相似对角化的矩阵为( )
admin
2019-01-25
65
问题
下列矩阵中,不能相似对角化的矩阵为( )
选项
A、
B、
C、
D、
答案
D
解析
本题考查矩阵可相似对角化的条件。实对称矩阵必可相似对角化;n阶矩阵A如果有n个不同的特征值或有n个线性无关的特征向量,则矩阵A必可相似对角化。
A选项的矩阵是实对称矩阵,因此必可相似对角化。
B选项的矩阵是一个上三角矩阵,主对角线元素即矩阵的特征值,因此该矩阵有3个
不同的特征值,则矩阵必可相似对角化。
C选项的矩阵设为C,则
得矩阵的特征值为9,0,0,对于二重特征值0,根据r(0E-A)=r(A)=1,可得齐次方程组(0E-A)x=0的基础解系有2个线性无关的特征向量;即属于特征值0的线性无关的特征
向量有2个,从而C选项的矩阵必可相似对角化。
D选项的矩阵是一个上三角矩阵,主对角线元素为其特征值,分别为-1,-1,2,对于特征值-1,由
可知齐次方程组(-E-A)X=0只有一个解向量,即属于二重特征值一l的特征向量只有1个,因此D选项的矩阵不能相似对角化。
综上所述,故本题选D。
转载请注明原文地址:https://www.kaotiyun.com/show/vhP4777K
0
考研数学三
相关试题推荐
在xOy坐标平面上求一条曲线,使得过每一点的切线同该点的向径及Oy坐标轴一起构成一个等腰三角形.
求解微分方程+x+sin(x+y)=0.
设函数f(x)=收敛.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
求二重积分I=(x+y)2dxdy,其中积分区域D={(x,y)|0≤ay≤x2+y2≤2ay,a>0}.
设随机变量X的分布函数FX(x)为严格单调增加的连续函数,Y服从[0,1]上的均匀分布,证明:随机变量Z=FX—1(Y)的分布函数与X的分布函数相同.
已知在微分方程y’+p(x)y=f(x)中,p(x)≥c>0,且f(x)=0.试证:微分方程的通解当x→+∞时都趋于零.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为()
设函数f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充分条件是()
随机试题
男性,38岁,饱餐饮酒后中上腹持续疼痛9小时,伴恶心、呕吐。既往体健。体格检查:体温37.0℃,血压16/10kPa,腹平软,中上腹压痛,无反跳痛及肌紧张,肠鸣音不亢进。急性胰腺炎被证实,下列哪项治疗措施是错误的
盐酸普鲁卡因的主要降解途径为()
肺痈初期的主要病理是肺痈恢复期的主要病理是
A、黄褐色便B、柏油样便C、白陶土色便D、乳凝便E、米泔样便阻塞性黄疸可见()。
关于研究领导行为的俄亥俄模式的说法,错误的是()。
案例:李老师在进行Flash综合复习课教学时,以“制作北京风景名胜电子相册”为学习总任务,将学生4人分为一组进行小组合作,任务完成后将小组作品上传到教学平台上,由其他小组评价、赏析,然后进行投票,知图16、图17所示。最后,李老师分别远取票数最高的、最低
某鸭梨产区建立恒温库储存鸭梨,为反季销售提供了条件,也为鸭梨增收提供了保障。据测算,每储存1千克鸭梨可增加收入0.5元,这一做法表明()。
在我国同日本发展双边贸易中,我国处于优势的项目是()。
[*]
(l)Easternmedicinesarebecomingmorepopularinthewest,butfewpeoplerealizehowlongthetwocultureshaveexchangedidea
最新回复
(
0
)