首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
判断下列各向量是否构成向量空间. (1)V1={x=(x1,x2,…,xn)|x1+2x2+…+nxn=0,xi∈R}. (2)V2={x=(x1,x2,…,xn)|x1.x2.….xn=0,xi∈R}.
admin
2020-09-25
93
问题
判断下列各向量是否构成向量空间.
(1)V
1
={x=(x
1
,x
2
,…,x
n
)|x
1
+2x
2
+…+nx
n
=0,x
i
∈R}.
(2)V
2
={x=(x
1
,x
2
,…,x
n
)|x
1
.x
2
.….x
n
=0,x
i
∈R}.
选项
答案
(1)(0,0,…,0)∈V
1
,所以V
1
非空.设α=(a,
1
,a
2
,…,a
n
)∈V
1
,β=(b
1
,b
2
,…,b
n
)∈V
1
,则α+β=(a
1
+b
1
,a
2
+b
2
,…,a
n
+b
n
),而 (a
1
+b
1
)+2(a
2
+b
2
)+…+n(a
n
+b
n
) =(a
1
+2a
2
+…+na
n
)+(b
1
+2b
2
+…+nb
n
)=0+0=0, kα=(ka
1
,ka
2
,…,ka
n
),k∈R,而 ka
1
+2ka
2
+…+nka
n
=k(a
1
+2a
2
+…+na
n
)=k.0=0, 所以α+β∈V
1
,kα∈V
1
,于是V
1
是向量空间. (2)令α=(1,0,…,0),β=(0,1,…,1),则α,β∈V
2
,而α+β=(1,1,…,1),但1×1×…×1—1≠0,所以α+β[*]V
2
.所以V
2
不是向量空间.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/vWx4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
微分方程(y+x3)dx一2xdy=0满足的特解为_________。
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
(96年)设某种商品的单价为p时,售出的商品数量Q可以表示成Q=-c.其中a、b、c均为正数,且a>bc.(1)求P在何范围变化时,使相应销售额增加或减少;(2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
随机试题
社会政策运行以一定的资源为前提,社会政策资源包括()。
采用普鲁卡因局部麻醉时,可以预防患者出现局麻药毒性反应的措施是
男,34岁。从事接触汞的职业6年。近1年出现神经衰弱症状,尿汞增高。考虑轻度汞吸收。首先处理原则为
A、发热,小便赤热,尿时灼痛B、排出砂石,排尿中断,腰酸绞痛C、小腹胀满,尿涩疼痛,余沥不尽D、小便混浊,自如泔浆,尿道不痛E、小便混浊,滑如脂膏,尿热涩痛膏淋的临床特点是
道路照明主要是为保证夜间交通的安全与畅通,大致分为()。
申请专利的发明创造在法定期限内,参加中国政府主办的国际展览会上首次展出,不丧失新颖性。该法定期限是()。
用盈余公积转增资本,所有者权益总额不变。()
普通旅客乘坐动车时,可以免费携带的杆状物品的长度不能超过160厘米。()
学校心理辅导的一般目标与学校教育的目标应当是一致的。()
A、Thespeakerswilldressformallyfortheconcert.B、Themanwillreturnhomebeforegoingtotheconcert.C、Itisthefirstti
最新回复
(
0
)