首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
admin
2019-03-19
96
问题
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=
是否正定矩阵.
选项
答案
1 设m+n维列向量 [*] 其中X、Y分别为m、n维列向量.若Z≠0,则X、Y不同时为0,不妨设X≠0,因为A正定,所以X
T
AX>0;因为B正定,故对任意n维向量Y,有Y
T
BY≥0. 于是,当Z≠0时,有 Z
T
CZ=[X
T
Y
T
][*]=X
T
AX+Y
T
BY>0 因此,C是正定矩阵. 2 因为A、B都是正定矩阵,故A、B的特征为值全为正.由C的特征方程 [*] =|λE
m
-A||λE
n
-B|=0 知C的全部特征值就是A和B的全部特征值的并集,故C的特征值全大于0,因此C为正定矩阵. 解3因为A、B都是正定矩阵,故存在可逆矩阵M、N,使得A=M
T
M,B=N
T
N,故 [*] 其中,分块矩阵[*]可逆,故C为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XeP4777K
0
考研数学三
相关试题推荐
设函数f(x)=且λ>0,则∫—∞∞xf(x)dx=________。
设y=y(x)是由方程2y3—2y2+2xy—x2=1确定的,则y=y(x)的极值点是________。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Q),下的标准形为y12+y22,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设A,B均为n阶矩阵,A可逆,且A—B,则下列命题中①AB~BA;②A2~B2;③A2~BT;④A—1~B—1。正确的个数为()
设f(x)二阶可导,f(0)=0,令g(x)=(1)求g’(x);(2)讨论g’(x)在x=0处的连续性.
的通解为______.
改变积分次序f(x,y)dx+f(x,y)dx.
参数A取何值时,线性方程组有无数个解?求其通解.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明存在ξ∈(a,b)使
随机试题
大叶性肺炎时肺肉质变的发生主要是由于
简述吸收直接投资的种类和方式。
LH的主要生理作用错误的是
网络计划的缺点是()。
电磁流量计的上游侧应有()倍管径长度的直管段。
会计核算软件的子系统之间相辅相成,不可分割,在实际使用过程中,只能作为整个电算化核算系统的一部分来使用,不可以独立使用。()
血液中的高浓度脂肪蛋白质含量的增加,会使人体阻止吸收过多胆固醇的能力增加,从而降低血液中的胆固醇。有些人通过规律的体育锻炼和减肥,能明显地增加血液中高浓度脂肪蛋白质的含量。根据上述论述,可以推出的最恰当的结论是:
单行条例
有以下程序#includeinta=1,b=2;voidfunl(inta,intb){printf("%d%d",a,b);}voidfun2(){a=3;b=4;}
A、Itisgoingtoclosedownsoon.B、Veryfewworkerswillbeforcedtoresign.C、Lotsofitsfactorieshavestoppedrunning.D、M
最新回复
(
0
)