设f(x)在[0,+∞)可导,且f(0)=0.若f’(x)>>-f(x),x∈(0,+∞),求证:f(x)>0,x∈(0,+∞).

admin2017-05-31  10

问题 设f(x)在[0,+∞)可导,且f(0)=0.若f’(x)>>-f(x),x∈(0,+∞),求证:f(x)>0,x∈(0,+∞).

选项

答案要证f(x)>0 <=> exf(x)>0 (x>0). 由exf(x)在[0,+∞)可导且[exf(x)]’=ex[f’(x)+f(x)]>0 (x>0) => exf(x)在[0,+∞)单调上升 =>exf(x)>exf(x)|x=0=0 (x>0) => f(x)>0 (x>0).

解析
转载请注明原文地址:https://www.kaotiyun.com/show/vMt4777K
0

最新回复(0)