首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
A=E-αβT,其中α,β都是n维非零列向量,已知A2=3E-2A,求αTβ.
admin
2018-06-27
84
问题
A=E-αβ
T
,其中α,β都是n维非零列向量,已知A
2
=3E-2A,求α
T
β.
选项
答案
A
2
=3E-2A, A
2
+2A-3E=0. (A+3E)(A-E)=0, (4E-αβ
T
)(-αβ
T
)=0, 4αβ
T
-αβ
T
αβ
T
=0,(β
T
α是数!) (4-β
T
α)αβ
T
=0,(由于α,β都是非零列向量,αβ
T
不是零矩阵) [*] 4-β
T
α=0,β
T
α=4,从而α
T
β=β
T
α=4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/uik4777K
0
考研数学二
相关试题推荐
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
下列矩阵中两两相似的是
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3设P=(α,Aα,A2α),求P-1AP.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
随机试题
易卜生是欧洲近代现实主义戏剧的杰出代表,他是()
调节血钙浓度的物质有【】
指出"平治于权衡,去菀陈挫,开鬼门,洁净府"之论见于
国家不鼓励引进境外落后的用能技术、设备和材料。()
在电气工程配管时,切割速度快、功效高、质量好,目前较先进、有效的管子切割方法为()。
根据《水利工程质量管理规定》(水利部令第7号),组织设计和施工单位进行设计交底的主体是()。
导游服务三要素指的是()。
杂志对于()相当于()对于农民
撰写实验研究报告需要注意哪些方面?
Attendingtoawifeandsixchildren______mostofhistimes.
最新回复
(
0
)