首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 同解.求a,b,c的值.
已知齐次线性方程组 同解.求a,b,c的值.
admin
2016-10-20
109
问题
已知齐次线性方程组
同解.求a,b,c的值.
选项
答案
因为方程组(Ⅱ)中“方程个数<未知数个数”,所以方程组(Ⅱ)必有非零解.因此方程组 (Ⅰ)必有非零解.从而(Ⅰ)的系数行列式必为0,即有 [*] 对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 可求出方程组(Ⅰ)的通解是k(-1,-1,1)
T
. 由于(-1,-1,1)
T
是方程组(Ⅱ)的解,故有 [*] 当b=1,c=2时,方程组(Ⅱ)为[*]其通解是k(-1,-1,1)
T
,所以方程组(Ⅰ)与Ⅱ同解. 当b=0,c=1时,方程组(Ⅱ)为[*]由于秩r(Ⅱ)=1,而r(Ⅰ)=2,所以方程组(Ⅰ)与(Ⅱ)不同解.故b=0,c=1应舍去. 从而当a=2,b=1,c=2时方程组(Ⅰ)与(Ⅱ)同解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ugT4777K
0
考研数学三
相关试题推荐
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
如何理解文学典型的特征性?
通过撤销、解除消极行为后果(比如惩罚)以鼓励积极性行为的方法称为【】
正常代谢中肾小管对糖的重吸收主要部位是
下列关于城市供水规划内容的表述,哪项是正确的()
某公司股票目前的市价为40元,有1份以该股票为标的资产的欧式看涨期权(1份期权包含1股标的股票),执行价格为42元,到期时间为6个月。6个月以后股价有两种可能:上升20%或者下降25%,则套期保值比率为()。
员工素质测评体系的横向结构不包括()
有个地方的交警中队开展有奖举报活动,对举报违章行为的公民奖励100元当地KTV的消费券,你如何看?
根据以下资料,回答问题。改革开放三十多年以来,广东经济发展连上新台阶,综合实力不断实现大跨越。1979—2012年,世界经济年均增长速度为2.8%,中国增速为9.8%,广东增速则达13.3%。持续较快的经济增速,推动广东经济总量不断跃上新台阶。自198
阅读以下说明和C函数,将应填入(n)处的字句写在答题纸的对应栏内。【说明】若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对于m行n列的稀疏矩阵M,进行转置运算后得到n行m列的矩阵MT,如图2-3所示。为了压缩稀疏矩阵的
【B1】【B4】
最新回复
(
0
)