首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为 (1)求矩阵A. (2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为 (1)求矩阵A. (2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
admin
2020-09-25
86
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第3列为
(1)求矩阵A.
(2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
选项
答案
(1)由于二次型在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,所以A的特征值为λ
1
=λ
2
=1,λ
3
=O. 由于Q的第3列为[*].所以A对应于λ
3
=0的特征向量为α
3
=[*] 由于A是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于λ
1
=λ
2
=1的特征向量为α=(x
1
,x
2
,x
3
)
T
,则α
T
α
3
=0,即[*] 取α
1
=(0,1,0)
T
,α
2
=(一1,0,1)
T
,则α
1
,α
2
与α
3
是正交的,即为对应于λ
1
=λ
2
=1的特征向量.由于α
1
,α
2
是相互正交的,所以只需单位化: [*] (2)由于A的特征值为1,1,0,所以A+E的特征值为2,2,1,则A+E的特征值全大于零,故A+E是正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/uWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
方程组x1+x2+x3+x4+x5=0的基础解系是_________.
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为________.
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
随机试题
A.肺炎B.肺不张C.肺间质病变D.胸腔积液类风湿关节炎患者最常见的肺病变为
慢性阻塞性肺疾病的发病因素有哪些?
对咨询服务机构的信任不能延续,则客户在支付了()的应付服务费后,有权随时解除服务项目合同。
下列费用不计入商品住宅价格为()。
出租车公司发生的下列业务中,按照交通运输服务缴纳增值税的有()。
下列的几种转变中,()不属于2018年3月9日,国务院办公厅印发《关于促进全域旅游发展的指导意见》(国办发[2018]15号)要求旅游业着力实现的转变。
幼儿园下周一要开展手工活动,张老师要求每位幼儿的家长都要协助幼儿准备废旧材料。周一那天,只有苗苗没有带材料来,于是,张老师就不让她参加活动。苗苗只能站在一旁看着同伴活动,情绪很低落,以至于一天都很少说话。回到家后,苗苗冲着爸爸大发脾气……你认为张老师的
外向型经济
以下选项中不合法的标识符是()。、
Manystudentsagreedtocome,butsomestudentsagainstbecausetheysaidtheydon’thavetime.
最新回复
(
0
)