首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
admin
2019-03-19
68
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α
1
,…,β+α
t
线性无关.
选项
答案
证 设有一组数k
0
,k
1
…,k
t
.使得 k
0
β+k
1
(β+α
1
)+…+k
t
(β+α
1
)=0即 (k
0
+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0 (*) 用矩阵A左乘(*)式两端并注意Aα
i
=0(i=1,…,t),得 (k
0
+k
1
+…+k
t
)Aβ=0因为Aβ≠0,所以有 k
0
+k
1
+…+k
t
=0 (**)代入(*)式,得 k
1
α
1
+…+k
t
α
1
=0由于向量组α
1
,…,α
t
是方程组AX=0的基础解系,所以 k
1
=…=k
t
=0因而由(**)式得k
0
=0.因此,向量组β,β+α
1
,…,β+α
t
线性无关.
解析
本题主要考查向量组线性无关的定义证明法及齐次方程组基础解系的概念.利用定义证明向量组线性无关,就是从向量组的线性组合等于零出发,由已知条件来推证线性组合的系数都为零,本题的推证关键是“用A左乘”这一变换.
转载请注明原文地址:https://www.kaotiyun.com/show/feP4777K
0
考研数学三
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设g(x)=∫0xf(u)du,其中f(x)=则g(x)在区间(0,2)内()
计算积分∫—11dy+sin3y)dx。
已知矩阵有两个线性无关的特征向量,则a=________。
微分方程y’=1+x+y2+xy2的通解为________。
设an=2,an+1=(n=1,2,…).证明:(1)an存在;(2)级数收敛.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
求微分方程y’’+2y’-3y=(2x+1)ex的通解.
设f(x,y)=(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
设求A的特征值,并证明A不可以对角化.
随机试题
人际关系学说认为,人是()
包糖衣时包隔离层的主要材料是
女婴,营养状况良好,能坐,见生人即哭,前囟2×2cm,有2颗乳牙。该婴儿的头围约为
在下列各种观点中,体现了合作共赢的价值理念,有利于实现企业经济效益和社会效益统一的财务管理目标是()。
用列表法编制的弹性预算,主要特点有()。
阅读下面的材料。回答后面的问题。材料一:一对夫妻开了家烧酒店。丈夫是个老实人,为人真诚、热情,烧制的酒也好,人称“小茅台”。有道是“酒香不怕巷子深”,一传十,十传百,酒店生意兴隆,常常供不应求。为了扩大生产规模,丈夫决定外出购买设备。临行前,他把
2022年3月,国务院发布《关于加快推进政务服务标准化规范化便利化的指导意见》。该指导意见明确,()年年底前,国家、省、市、县、乡五级政务服务能力和水平显著提升,政务服务中心综合窗口全覆盖,全国一体化政务服务平台全面建成,企业和群众经常
近代中国首先提出“振兴中华”口号的是()。
Wal-MartWal-Martismorethanjusttheworld’slargestretailer.Itisaneconomicforce,aculturalphenomenonandalight
DealingwithCriticismA)Noonelikesgettingcriticism.Butitcanbeachancetoshowoffarareskill:takingnegativefeedba
最新回复
(
0
)