首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为()T. (I)求矩阵A; (II)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为()T. (I)求矩阵A; (II)证明A+E为正定矩阵,其中E为3阶单位矩阵.
admin
2019-07-19
37
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第3列为(
)
T
.
(I)求矩阵A;
(II)证明A+E为正定矩阵,其中E为3阶单位矩阵.
选项
答案
(I)由题设,A的特征值为1,1,0,且(1,0,1)
T
为A的属于特征值0的一个特征向量.设(x
1
,x
2
,x
3
)
T
为A的属于特征值1的特征向量,因为A的属于不同特征值的特征向量正交,所以(x
1
,x
2
,x
3
)[*]]=0,即x
1
+x
3
=0,取([*])
T
、(0,1,0)
T
为A的属于特征值1的两个正交的单位特征向量.令正交矩阵 [*] (Ⅱ)由(I)知A的特征值为1,1,0,所以A+E的特征值为2,2,1,又A+E为实对称矩阵,所以A+E为正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/u8c4777K
0
考研数学一
相关试题推荐
如果f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f’(x)>0,又f(a)<0,则()
将F(x)=展开成x的幂级数。
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,记向量组(Ⅱ):α1,α2,...,αm-1,β,则
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设随机点(X,Y)在单位圆内的联合密度为(Ⅰ)求常数C;(Ⅱ)判断X,Y的独立性与相关性;(Ⅲ)设随机点的极坐标为(R,θ),求(R,θ)的联合密度,并判断R,θ的独立性.
设A是n阶实矩阵,将A的第i列与j列对换,然后再将第i行和第j行对换,得到B,则A,B有()
已知向量ξ1和ξ2是方程(λE-A)x=0的两个不同解,则下列向量中必是矩阵A的属于λ的特征向量的是()
设f(x,y)是定义在区域0≤x≤1,x≤y≤1上的二元连续函数,f(0,0)=一1,求极限。
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
证明二重极限不存在。
随机试题
请以实例说明典范人物对特定地域文化特色的影响。
左侧上颌第一前磨牙应记录为
应补充哪些病史首先选择哪项辅助检查有助于诊断
医学伦理学的研究对象.不包括
再保险合同的性质是( )。
职业生涯规划使用的程序可以围绕以下方面展开()。
X公司希望以浮动利率融资,Y公司希望以固定利率融资。两家公司投资的金额相同,他们分别收到以下利率报价:请设计一笔利率互换,使X公司得到互换利益的60%,而Y公司只是得到互换利益的40%,并指出双方最终实际负担的利率(给出计算过程)。(中山大学
《合同法》第119条第1款规定:当事人一方违约后,对方应当采取适当措施防止损失的扩大;没有采取适当措施致使损失扩大的,不得就扩大的损失要求赔偿。这是下列哪一个原则强烈要求的?()
Accordingtotheauthor,babieslearntodothingswhich______.AccordingtoPapousekthepleasurebabiesgetinachievingsom
THENATUREANDAIMSOFARCHAEOLOGYArchaeologyispartlythediscoveryofthetreasuresofthepast,partlythecarefulworkof
最新回复
(
0
)