首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中,正确的是
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中,正确的是
admin
2019-02-01
58
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解.
其中,正确的是 ( )
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A*x=0时,易知A
n+1
x=A(A
n
x)=0,故(I)的解必是(Ⅱ)的解,也即①正确、③错误.当A
n+1
=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零,可以证明这种情况下x,Ax,…,A
n
X是线性无关的.由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量都是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(I)的解,故②正确、④错误.故选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/tuj4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程sinx+2y—z=ez所确定,则=___________.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x0,y)=f(x0
用导数定义证明:可导的周期函数的导函数仍是周期函数,且其周期不变.
设在区[e,e2]上,数p,q满足条件px+q≥lnx求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
用变量代换x=sint将方程(1-x2)化为y关于t的方程,并求微分方程的通解.
已知A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于()
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
以咳嗽无力,喘息短气,呼多吸少为主要临床表现的证候是()
疏散门的宽度与走道、楼梯梯段宽度的匹配性。一般来讲,走道的宽度均较宽,当以楼梯疏散门宽为计算宽度时,梯段的宽度不得()疏散门的宽度。
下列各项不一定属于所有者权益的有()。
我国《商业银行法》明确规定商业银行不得从事证券经营业务,同时利率尚未完全市场化,在这样的市场环境和经营环境下,商业银行开发销售理财产品面临的约束较多,潜在法律风险大。()
下列现象中利用了回声的是()。
现有一棵无重复关键字的平衡二叉树(AVL树),对其进行中序遍历可得到一个降序序列。下列关于该平衡二叉树的叙述中,正确的是_______。
HTML<body>元素中,(42)属性用于定义超链接被鼠标点击后所显示的颜色。
Essentiallyallpolariceformsfromprecipitationthatfallsassnow.Extremelycoldaircannotholdmuchmoistureandconseque
Wecannotformasoundopinionwithoutfacts,forweneedtohavefactualknowledge______ourthinking.
Somefuturologistshaveassumedthatthevastupsurge(剧增)ofwomenintheworkforcemayportendarejectionofmarriage.Manyw
最新回复
(
0
)