首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
admin
2021-11-15
69
问题
设X
1
,X
2
分别为A的属于不同特征值λ
1
,λ
2
的特征向量.证明:X
1
+X
2
不是A的特征向量.
选项
答案
(反证法)不妨设X
1
+X
2
是A的属于特征值λ的特征向量, 则有A(X
1
+X
2
)=λ(X
1
+X
2
), 因为AX
1
=λ
1
X
1
,AX
2
=λ
2
X
2
,所以(λ
1
-λ)X
1
+(λ
2
-λ)X
2
=0, 而X
1
,X
2
线性无关,于是λ
1
=λ
2
=λ
3
,矛盾,故X
1
+X
2
不是A的特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tey4777K
0
考研数学二
相关试题推荐
设.证明:当nπ≤x﹤(n+1)π时,2n≤S(x)﹤2(n+1).
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求出函数y(x)的极值。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设.求(I)(II)的基础解系。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A的其他特征值与特征向量。
设有三个线性无关的特征向量,求a及An.
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
随机试题
简析《齐桓晋文之事》中譬喻和推理的特点。
新鲜血液中含有X因子,其作用是
震颤麻痹首发症状为
下列哪些是溶血性黄疸的临床表现
在与业主接洽中,获取业主委托的首要步骤是()。
下列施工成本分析方法中,用来分析各种因素对成本影响程度的是()。
下列各项中,用以核算企业向银行或其他金融机构借入的偿还期限在1年以上(不含1年)的各项借款的账户是()。
赠与房屋时,确定契税计税依据所参照的价格或价值是()。
人类社会的发展是()
【B1】【B2】
最新回复
(
0
)