首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
假设随机变量X1、X2、X3、X4相互独立,且同分布,P{Xi=0}=0.6,P{Xi=1}=0.4(i=1,2,3,4),求行列式的概率分布.
admin
2013-07-30
83
问题
假设随机变量X
1
、X
2
、X
3
、X
4
相互独立,且同分布,P{X
i
=0}=0.6,P{X
i
=1}=0.4(i=1,2,3,4),求行列式
的概率分布.
选项
答案
记Y
1
=X
1
X
4
,Y
2
=X
2
X
3
,则X=Y
1
-Y
2
,且Y
1
,Y
2
独立同分布: P{Y
1
=1}=P{X
1
=1,X
4
=1}=P{X
1
=1}P{X
4
=1}=0.16=P{Y
2
=1};P{Y
1
=0}=1-P{Y
1
=1}=0.84=P{Y
2
=0}。 X=Y
1
-Y
2
的所有可能取值-1、0、1,且 P{X=-1}=P{Y
1
-Y
2
=-1}=P{Y
1
=0,Y
2
=1}=P{Y
1
=0}P{Y
2
=1}=0.84×0.16=0.1344: P{X=1}=P{Y
1
-Y
2
=1}=P{Y
1
=1,Y
2
=0}=P{Y
1
=1}P{Y
2
=0}=0.16×0.84=0.1344; P{X=0}=1-2×0.1344=0.7312. 于是行列式的概率分布[*]
解析
X由二阶行列式表示,实际上是随机变量X
1
、X
2
、X
3
、X
4
的函数,仍是一个随机变量,且X=X
1
X
4
-X
3
X
2
,根据X
1
、X
2
、X
3
、X
4
独立同分布,有X
1
X
4
与X
3
X
2
独立同分布,因此可先求出X
1
X
4
与X
2
,X
3
的分布律,再求X的分布律
转载请注明原文地址:https://www.kaotiyun.com/show/tP54777K
0
考研数学一
相关试题推荐
[2004年]设A是三阶方阵,将A的第1列与第2列交换得到B,再把B的第2列加到第3列得到C,则满足AQ=C的可逆矩阵Q为().
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设汁要求.当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/mjn的速率均匀扩大(假设注入液体前,容器内无液
(1989年)已知
求微分方程y"+4y’+4y=eax之通解,其中a为实数.
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求(A-3E)6.
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
已知R3的两个基为求由基a1,a2,a3到基b1,b2,b3的过渡矩阵P.
设u=u(x,y,z)是由方程ez+u-xy-yz-zu=0确定的可微函数,求u=u(x,y,z)在点P(1,1,0)处方向导数的最小值.
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
随机试题
某城市的房地产开发商只能通过向银行直接贷款或者通过预售商品房来筹集更多的开发资金。因此,如果政府不允许银行增加对房地产业的直接贷款,该市的房地产开发商将无法筹集到更多的开发资金。以下哪个选项如果为真,则最能支持上述论证?
治疗肾虚腰痛,可选用
关于脑纵裂蛛网膜下腔出血,最有诊断价值的CT表现是:
混凝土抗冻等级是按()龄期的试件用快冻试验方法测定的。
进口许可证的有效期为______。
全员结算制度的期货交易所对会员结算,会员对其受托的()结算。
下列属于学习迁移的现代理论有()。
【B1】【B16】
情景:SunRiseFilmCenter电影院贴出通知,告知电影TheDayAfter(《后天》)的观众电影放映厅的变化。任务:请你用英语给TheDayAfter(《后天》)的观众写一张50个词左右的通知。
Directions:HelpingothersinneedhasbeenregardedasoneofvirtuesinChinesetraditionalculture.However,nowadaysweofte
最新回复
(
0
)