首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2016-10-26
60
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(I)由已知条件有 A(α
1
,α
2
,α
3
) =(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P
1
可逆,所以[*]AP
1
=B,即矩阵A与B相似.由 [*] 知矩阵b的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵b,由(E一B)x=0,得λ=1的特征向量β
1
=(一1,1,0)
T
, β
2
=(一2,0,1)
T
; 由(4E—b)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 于是 [*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tFu4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
用集合运算律证明:
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设A是m×n矩阵,B是,n×m矩阵,则
随机试题
某学校的三名初中生,两两一起称体重,分别为83千克、85千克和86千克。问:三名初中生中最大的体重为多少千克?
用组合铣削法加工台阶时,两把三面刃铣刀的直径应相同,最好两把铣刀同时加工圆柱面切削刃。
中年危机的表现。
《百合花》是茹志鹃于1958年发表在《延河》杂志上的短篇小说。()
女性患者,29岁,剖宫产术后9个月,哺乳,月经已复潮,要求放置宫内节育器避孕。该妇女放置TCu380A宫内节育器手术顺利。患者术后因个人原因一直未随访,已放置宫内节育器2年,平时月经规律,5/30天。此次停经40天,阴道淋漓出血一周,伴轻微下腹痛。应首
大气环境所有评价等级评价范围的直径或边长一般不应()。
某公司拥有一幢价值200万元的办公用楼,分别与甲、乙两个保险公司签订了财产保险合同。保险金额分别是120万与180万元。后该办公楼遭受火灾,损失达180万元,按照以保险金额为基础的比例责任制的方式,甲、乙两家保险公司应承担的赔款分别为( )万元。
根据个人所得税法律制度的规定,下列各项中,免征或者暂免征收个人所得税的有()。
根据下列文字回答问题。2011年1—5月,全国进出口总额14018亿美元,同比增长27.4%,其中,出口7124亿美元,增长25.5%;进口6894亿美元,增长29.4%。当月进、出口保持较快增长。5月份,全国进出口总额3013亿美元,
Readthearticlebelowaboutfamilybusinessesandthequestions.Foreachquestion(13-18),markoneletter(A,B,C,orD)on
最新回复
(
0
)