首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2016-10-26
76
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(I)由已知条件有 A(α
1
,α
2
,α
3
) =(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P
1
可逆,所以[*]AP
1
=B,即矩阵A与B相似.由 [*] 知矩阵b的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵b,由(E一B)x=0,得λ=1的特征向量β
1
=(一1,1,0)
T
, β
2
=(一2,0,1)
T
; 由(4E—b)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 于是 [*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/tFu4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
证明下列函数是有界函数:
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
随机试题
构建科学合理、公平公正的社会收入分配体系,关系到最广大人民的根本利益。当前,我国在公平与效率的关系上,必须坚持()。
A、Shewasveryfat.B、Shewasalittlefat.C、Shewasaverageweight.D、Sheneededtreatmentorweightloss.B根据此句“I’mnotreall
女,67岁,反复咳嗽、咳痰25年。近来轻微活动即感气急。血气分析:PaO250mmHg,PaCO260mmHg,pH7.30。该患者的治疗,不宜采用
富于淋巴细胞的经典型霍奇金病的RS细胞特点
产褥病率是
本题涉及增值税法、消费税法、城建税、教育费附加及地方教育附加。某市一卷烟生产企业(甲企业)为增值税一般纳税人,2014年11月有关经营情况如下:(1)甲企业向农业生产者收购烟叶一批,收购凭证上注明的价款800万元,并向烟叶生产者支付了国家规定的价外补贴;
()是以稳重,但灵活性不足;踏实,但有些死板;沉着冷静,但缺乏生气为特征的。
依次填入下面一段文字横线处的词语,最恰当的一组是()。然则,冷静须与同情相辅相成,方不偏失人冷漠。《史记》一书恒常感人之处,正在于字里行间每每有司马迁个人的生命感思涌动,它绝不只是一堆死寂刻板的文字而已。_________,我则又逐渐领悟
71.Thestudyofgeneticsistodaysofaradvancedthatweshallsoonbeabletoproduceakindofgenetically"perfectsuperman
会员制期货交易所会员大会的常设机构是()。
最新回复
(
0
)