首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 求方程组(I)的一个基础解系;
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1=[2,-1,a+2,1]T, α2=[-1,2,4,a+8]T. 求方程组(I)的一个基础解系;
admin
2019-08-06
67
问题
设四元齐次线性方程组(I)为
且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=[2,-1,a+2,1]
T
, α
2
=[-1,2,4,a+8]
T
.
求方程组(I)的一个基础解系;
选项
答案
解一 由[*]得到方程组(l)的基础解系为β
1
=[5,-3,1,0]
T
,β
2
=[-3,2,0,1]
T
. 解二 对方程组(I)的系数矩阵作初等行变换,有 [*] 由此可得方程组(I)的一个基础解系为β
1
=[1,0,2,3]
T
,β
2
=[0,1,3,5]
T
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/swJ4777K
0
考研数学三
相关试题推荐
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人同时向目标射击,求目标被命中的概率;
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设f(x)在[0,1]上二阶可导,且|f’’(x)I≤|(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
设f(x)在[一1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n—1一1(n≥1),根据大数定律,当n→∞时Yi依概率收敛到零,只要{Xn,n≥1}
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒中,最后从丙盒内再任取1个球,试求:若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
求下列定积分:∫-11
随机试题
劳动合同变更,应当采用_________。
在旅游产品组合策略中,向某一特定的旅游市场提供其所需要的多种旅游产品,该策略被称为策略()
机体内最粗最长的神经是()。
林某起诉彭某,人民法院对彭某采取财产保全措施,债务人彭某的财产不能满足保全要求,但彭某对唐某有到期债权,下列说法正确的是:()
施工组织总设计的主要内容包括()。
根据《中华人民共和国反垄断法》的规定,下列各项中不属于政府及其所属部门滥用行政权力排除、限制竞争的行为是()。
企业变革的驱动因素包括()。
黄金假期,游乐园人满为患.窗口买票队伍骚动.怎么办?
受到飓风“桑迪”的影响,美国股市30日将继续休市,这是纽约证券交易所一个多世纪以来首次因天气原因连续两天休市。
学生家长:这学期学生的视力普遍下降,这是由于学生的书面作业的负担太重。校长:学生视力下降和书面作业的负担没有关系。经我们调查,学生视力下降的原因,是由于他们做作业时的姿势不正确。以下哪项,如果为真,最能削弱校长的解释?
最新回复
(
0
)