首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,α1,β线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,α1,β线性无关.
admin
2019-02-23
69
问题
n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=|β|
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/slj4777K
0
考研数学二
相关试题推荐
设M=则有().
设向量组α1=线性相关,但任意两个向量线性无关,求参数t.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求极限
求极限
D是圆域的一部分,如图8.18所示,则I=[*][*]作极坐标变换,圆周方程为(y+1)2+χ2=1,即χ2+y2=-2y,即r=-2sinθ,积分区域D:-[*]≤θ≤0,0≤r≤-2sinθ,于是[*]
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设m,n均是正整数,则反常积分的收敛性()
计算二重积分,其中D是由直线x=2,y=2,x+y=1,y+y=3以及x轴与y所围成的平面区域。
随机试题
房间隔缺损患儿于胸骨左缘2、3肋间可闻及收缩期杂音产生的机制是
()的发行人,可视实际情况决定应披露的交易金额,但应在申报时说明。
某个体户常年经营个体运输业务,2010年该个体户发生如下经济业务:(1)签订运输合同20份,合计金额为10万元。(2)将自有的2辆货车出租给某运输队,双方签订了租赁合同,租金为每辆每月1000元,租期为1年。(3)将自有的2栋房屋分别出租,其中1栋出
一天,3个旅游团同时进人北京的一家饭店,行李进房后,一游客找到地陪说他的行李找不着了,地陪应在下述地方帮其找行李()。
英语教学法中语法翻译法的缺点有______。
中国自鸦片战争开始近百年来第一次取得完全胜利的反侵略战争是()。
A、 B、 C、 D、 A每组图形组成相似,只是部分发生变化,这一特征表明应考虑图形叠加。每组前两个图形叠加去同存异得到第三个图形,选项中只有A符合。
简述录音采访的特点及其采访要求。(中国传媒大学2011年研)
求微分方程出dy/dx=1/(2x+y)的通解.
A、Shehadmovedoutoftheoldaddress.B、Shedidnotcareaboutthem.C、Thelibrarydidn’ttrytoinformheraboutit.D、Thela
最新回复
(
0
)