首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. (1)写出二次型f的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. (1)写出二次型f的矩阵表达式; (2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
admin
2016-09-19
133
问题
已知二次型
f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
(1)写出二次型f的矩阵表达式;
(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
选项
答案
(1)二次型的矩阵A=[*],则二次型f的矩阵表达式f=χ
T
Aχ. (2)A的特征多项式|A-λE|=-(6+λ)(1-λ)(6-λ),则A的特征值λ
1
=-6,λ
2
=1,λ
3
=6. λ
1
-6对应的正交单位化特征向量p
1
=[*] λ
2
=1对应的正交单位化特征向量p
2
=[*] λ
3
=6对应的正交单位化特征向量p
3
=[*] 令正交矩阵 P=[p
1
,p
2
,p
3
]=[*] 所求正交变换[*],二次型f的标准型f=-6y
1
2
+y
2
2
+6y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/skT4777K
0
考研数学三
相关试题推荐
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设有一物质曲线Γ,在点(x,y,z)处它的线密度为μ(x,y,z),用第一类曲线积分分别表示:(1)该物质曲线关于x轴与y轴的转动惯量;(2)该物质曲线对位于线外点Mo(xo,yo,zo)处的单位质点的引力.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设随机变量X服从参数为λ的指数分布,则
随机试题
A/汤匙状B/鼓槌状C/竹节状D/椭圆形E/棒状肉毒梭菌菌体是
某建设项目工程费用6800万元,其他费用1200万元,预备费500万元,建设期贷款利息370万元,铺底流动资金710万元。预计在建设中原房屋拆除变现收入100万元,试车收入大于支出金额150万元,则该项目总概算为()万元。
我国对个体农业实行社会主义改造所遵循的原则是()。
人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾后,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
求下列复合函数的偏导数:设且f,φ具有二阶连续偏导数,求
下列选项中,用于声明类的继承的关键字是()
使用报表设计视图创建一个分组统计报表的操作包括①指定报表的数据来源②计算汇总信息③创建一个空白报表④设置报表排序和分组信息⑤添加或删除各种控件正确的操作步骤为
Whathasthemanbeeninvitedto?
Whichofthefollowingstatementsiscorrectonthebasisoftheinformationinthepassage?Whatkindofarticleisthispassa
A、Hehastoweartwopairsofjeans.B、Hecannottakeanyluggagewithhim.C、Hesaveslittlemoneyfromthetravel.D、Hecannot
最新回复
(
0
)