首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足 证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足 证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
admin
2019-03-30
82
问题
[2001年] 设f(x)在[0,1]上连续,在(0,1)内可导,且满足
证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ
-1
)f(ξ).
选项
答案
证一 将ξ换为x,待证等式化为 f’(x)-(1-1/x)f(x)=0, f’(x)-(x-lnx)’f(x)=0, e
-(x-lnx)
f’(x)-e
-(x-lnx)
(x-lnx)’f(x)=0, e
-(x-lnx)
f’(x)+[e
-(x-lnx)
]’f(x)=[e
-(x-lnx)
f(x)]’=0, 则应构造的辅助函数为 F(x)=e
-(x-lnx)
f(x)=xe
-x
f(x). 下用罗尔定理证明中值等式.由积分中值定理知,至少存在一点ξ
1
∈[0,1/k][*][0,1],使 [*] 即1·e
-1
f(1)=ξ
1
e
ξ
1
f(ξ
1
),亦即F(1)=F(ξ
1
).又F(x)在[ξ
1
,1]上满足罗尔定理的其他条件,故由罗尔定理知,至少存在一点ξ∈(ξ
1
,1)[*](0,1),使 F’(ξ)=0, 即 e
1-ξ
[f(ξ)-ξf(ξ)+ξf’(ξ)]=0, 亦即 f’(ξ)=(1-ξ
-1
)f(ξ). 证二 用积分法求出辅助函数.视f’(x)=(1-1/x)f(x)为f(x)所满足的齐次微分方程,由其通解公式得到 [*] 因而F(x)=xe
-x
f(x).下同解一略. 证三 由题设[*]首先想到使用积分中值定理.由该定理知,至少存在一点ξ∈[0,1/k][*][0,1],使 [*] 如果构造辅助函数F(x)=xe
1-x
f(x),则F(1)=1·e
0
f(1)=f(1),即 F(1)=f(1)=ξ
1
e
1-ξ
1
f(ξ
1
)=F(ξ
1
). 又F(x)在[ξ
1
,1]上连续,在(ξ
1
,1)内可导,于是由罗尔定理知,存在一点ξ∈(ξ
1
,1)[*](0,1),使 F’(ξ)=e
1-ξ
[f(ξ)-ξf(ξ)+ξf’(ξ)]=0, 即 f’(ξ)=(1-ξ
-1
)f(ξ), ξ∈(0,1).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/saP4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知齐次线性方程组同解,求a,b,c的值。
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,(Ⅰ)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;(Ⅲ)β可由α1,
设n阶矩阵A的伴随矩阵为A*,证明:(Ⅰ)若|A|=0,则|A*|=0;(Ⅱ)|A*|=|A|n—1。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
齐次方程组有非零解,则λ=________。
设函数f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充分条件是()
求曲线y=的上凸区间.
微分方程2y"=3y2满足初始条件y(-2)=1,y’(-2)=1的特解为______.
随机试题
外阴鳞状细胞癌发生可能与以下哪种疾病相关
根据《中华人民共和国未成年人保护法》和《中华人民共和国预防未成年人犯罪法》,对未成年人犯罪一律不公开审理的年龄是()。
对企业盈利能力分析主要指对利润额的分析。
中华民国地方政府一般设立()
百年未有之大变局
流行性脑脊髓膜炎严重者可有败血症休克及脑实质损害,脑脊液呈非化脓性改变。()
防静电措施主要包括()。
设计文件注明的工程合理使用年限的起算日期是()。
某公路工程施工中,施工单位在路面无机结合料稳定基层施工过程中,出现以下情况:(1)由于本工程的路面属高级路面,所以采用粉煤灰稳定细粒土做该路面的基层。(2)在选择水泥时,施工单位选择了终凝时间较短的水泥。(3)经检测,该工程中
课程计划的中心问题是()。
最新回复
(
0
)