首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若f(x)在[a,b]上具有二阶导数,且f(a)<0,f(b)<0,∫abf(x)dx=0,证明:存在一点ξ∈(a,b),使f”(ξ)<0.
若f(x)在[a,b]上具有二阶导数,且f(a)<0,f(b)<0,∫abf(x)dx=0,证明:存在一点ξ∈(a,b),使f”(ξ)<0.
admin
2022-06-04
36
问题
若f(x)在[a,b]上具有二阶导数,且f(a)<0,f(b)<0,∫
a
b
f(x)dx=0,证明:存在一点ξ∈(a,b),使f”(ξ)<0.
选项
答案
由f(A)<0,f(B)<0,∫
a
b
f(x)dx=0知,存在一点c(a<c<b),使f(C)>0(否则∫
a
b
f(x)dx<0). 在区间(a,c)和(c,b)上应用拉格朗日中值定理.存在x
1
(a,c),x
2
∈(c,b),使 f(C)-f(A)=f’(x
1
)(c-a)>0, a<x
1
<c f(B)-f(C)=f’(x
2
)(b-c)>0, c<x
2
<b 故有f’(x
1
)>0,f’(x
2
)<0. 在区间[x
1
,x
2
]上应用拉格朗日中值定理,存在ξ∈(x
1
,x
2
)[*](a,b),使 f’(x
2
)-f’(x
1
)=f”(ξ)(x
2
-x
1
)<0 所以f”(ξ)<0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sWR4777K
0
考研数学三
相关试题推荐
设f(x)的导数在x=a处连续,又,则().
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T十k1(1,0,2,1)T+k2(2,1,1,—1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
讨论函数在点(0,0)处是否连续;
设ATA=E,证明:A的实特征值的绝对值为1.
设某个箱子装有100件产品,其中一、二、三等品分别为80件、10件和10件,现从中随机抽取一件,记Xi=(i=1,2,3).(1)求(X1,X2)的联合分布;(2)求X1,X2的相关系数.
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止.求试验次数的数学期望.
设X,Y为两个随机变量,E(X)=E(Y)=1,D(X)=9,D(Y)=1,且ρXY=则E(X-2Y+3)2=______.
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设f(x)连续,且tf(2x-t)dt=arctanx2,f(1)=1,求f(x)dx.
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
随机试题
根据《建设工程质量管理条例》,()依法对建设工程质量负责。
喷射混凝土施工前,应做混凝土凝结时问试验,混凝土初凝时间不应大于()。
基金经理人在申请期间申请材料涉及的事项发生重大变化的,基金管理人应当自发生变化之日起()个工作日内向中国证监会提交更新材料。
确定消费税的应税销售额时,不能计入销售额中的项目是()。
民国北京四大热点商区是:前门、鼓楼、王府井、西单。()
体育教学组织形式中,友情分组的方法是()。
根据下列材料回答问题。2017年第一季度,某省农林牧渔业增加值361.78亿元,比上年同期增长5.9%,高于上年同期0.2个百分点。具体情况如下:该省种植业增加值119.21亿元,比上年同期增长8.2%,其中蔬菜种植面积358.80万亩,比上年同期增加
A、 B、 C、 D、 ASNMPv2表的状态列有6种取值:①active(可读写);②notIn-setvice(不可读写);③notReady(只读);④createAndGo(只读不写);⑤cr
项目管理有4个方面的内容,下列哪些方面工作对控制周期最有效?()
Theconceptofpersonalchoiceinrelationtohealthbehaviorsisanimportantone.Anestimated90percentofallillnessmayb
最新回复
(
0
)