首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当||X||=时XTAX的最大值.
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当||X||=时XTAX的最大值.
admin
2019-11-25
88
问题
设齐次线性方程组
有非零解,且A=
为正定矩阵,求a,并求当||X||=
时X
T
AX的最大值.
选项
答案
因为方程组有非零解,所以[*]=a(a+1)(a-3)=0,即a=-1或 a=0或a=3.因为A是正定矩阵,所以a
ii
>0(i=1,2,3),所以a=3.当a=3时,由 |λE-A|=[*]=(λ-1)(λ-4)(λ-10)=0, 得A的特征值为1,4,10.因为A为实对称矩阵,所以存在正交矩阵Q,使得f=X
T
AX[*]y
2
1
+4y
2
2
+10y
2
3
≤10(y
2
1
+y
2
2
+y
2
3
),而当||X|=[*]时, y
2
1
+y
2
2
+y
2
3
=Y
T
Y=Y
T
q
T
QY=(QY)
T
(QY)=X
T
X=||X ||
2
=2, 所以当||X||=[*]时,X
T
AX的最大值为20(最大值20可以取到,如y
1
=y
2
=0,y
3
=[*]).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/sBD4777K
0
考研数学三
相关试题推荐
设X~,Y服从(0,3)上的均匀分布,X与Y相互独立,则行列式的概率为______.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设事件A,B满足AB=,则下列结论中一定正确的是()
设A,B是任意两个事件,且AB,P(B)>0,则必有()
将一枚硬币重复掷五次,则正面、反面都至少出现两次的概率为_______.
设甲、乙两人随机决定次序对同一目标进行独立地射击,并约定:若第一次命中,则停止射击,否则由另一人进行第二次射击,不论命中与否,停止射击.设甲、乙两人每次射击命中目标的概率依次为0.6和0.5.(I)计算目标第二次射击时被命中的概率;(Ⅱ
随机试题
章程的含义及分类。
有关还价的论述错误的是()
A.休息,低盐饮食,限制入水量,补充蛋白质,给予利尿剂B.休息,高热量高蛋白饮食,保肝治疗C.休息,高热量限蛋白饮食,输入支链氨基酸D.休息,禁食,积极补足血容量并采取止血措施E.休息,控制输液量,纠正电解质紊乱,限制蛋白治疗肝硬化合并水钠潴留
艾滋病病原体是
和三氯乙酸反应,加热至60℃则生成红色渐变为紫色的苷为
小王在甲化工厂工作期间,严重违反操作规程,发生事故,不仅给甲厂造成重大损失而且本人也因伤住院。下列表述正确的是:
纠偏的主要对象是()造成的费用偏差。
()提出了预期收入理论。
矩阵图中通常要素之间可以()。
2013年1月26日,我国自主发展的()首次试飞取得圆满成功。该型飞机是我国依靠自己的力量研制的一种多用途运输机,可在复杂气象条件下执行各种物资和人员的长距离航空运输任务。
最新回复
(
0
)