首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( ).
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( ).
admin
2020-05-19
51
问题
已知二维随机变量(X,Y)服从二维正态分布,方差D(X)≠D(Y),则( ).
选项
A、X与Y一定独立
B、X与Y一定不独立
C、X+Y与X-Y一定独立
D、X+Y与X-Y一定不独立
答案
D
解析
(X,Y)为二维正态随机变量,如cov(X,Y)≠0,则X,Y相关,不独立.同样如X+Y,X—Y相关,则X+Y,X—Y一定不独立.
由于随机变量(X,Y)服从二维正态分布,X与Y独立
X与Y不相关,即ρ
xy
=0.而题中对此未作任何假设,(A)和(B)有时成立,有时不成立,然而
cov(X+Y,X-Y)=cov(X,X)+cov(Y,X)一cov(X,Y)一cov(Y,Y)
=D(X)一D(Y)≠0,
由此推出X+Y与X—Y相关,因此X+Y与X—Y不独立.仅(D)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/rjv4777K
0
考研数学一
相关试题推荐
设常数a∈[0,1],随机变量X~U[0,1],Y=|X一a|,则E(XY)=_________.
[*]
已知单位向量的三个方向角相等,点B与点M(1,一3,2)关于点N(一1,2,1)对称,求.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B-2E)-1=_________。
以下3个命题,①若数列{un}收敛于A,则其任意子数列{unj}必定收敛于A;②若单调数列{xn}的某一子数列{xhj}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A正
设有空间区域Ω1={(x,y,z)|x2+y2+z2≤R2,z≥0},Ω2={(x,y,2)|x2+y2+z2≤R2,x≥0,y≥0,z≥0},则下列选项中正确的是()
(94年)设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)=f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
曲线y=的切线与x轴和y由围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积,当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(I)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
随机试题
古希腊雅典,为民主制“宪法”的产生和民主政治形成奠定基础的改革是()
脑梗死属于
消毒探头的可取方法为
患者,男,56岁,因胸痛,发热,咳嗽3天来院就诊,1个月前有AMI史。查体:右胸腋下闻及胸膜摩擦音,胸骨左缘第3~4肋间可闻及心包摩擦音。心脏超声和X线胸片示胸腔和心包少量积液,左肺下有一片状模糊影。则初步诊断为
A、胆B、胃C、小肠D、大肠E、膀胱六腑中,主决断,与人体精神活动有关的是()
当事人一方不履行非金钱债务或者履行非金钱债务不符合约定的,在下列何种情形下,对方不得要求履行?()
为了要把工作站或服务器等智能设备联入一个网络中,需要在设备上插入一个()。
通过技术经济指标的对比,检查目标的完成情况,分析产生差异的原因,进行挖掘内部潜力的方法是()。
以下行为不违背《中华人民共和国未成年人保护法》的有()。(2014.广东)
Childrenneedexercise.Parentsoftenworrythat【C1】______timeforathleticsorevenforjustplayingontheJungleJimis
最新回复
(
0
)