首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2017-07-10
107
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
n1
,b
n2
,…,b
n,2n
)
T
,…,(b
n1
,b
n2
,…,b
b,2n
)
T
为方程组(I)的基础解系,所以该向量组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n—n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,其中k
1
,k
2
,…,k
n
为任意常数.
解析
本题考查齐次线性方程组基础解系的概念和通解的结构以及方程组系数矩阵的秩与基础解系中解向量个数的关系.
转载请注明原文地址:https://www.kaotiyun.com/show/rYt4777K
0
考研数学二
相关试题推荐
证明:[*]
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
求下列各极限:
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
求下列极限:
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
若f(x)是连续函数,证明
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
随机试题
不属于ACEI类药物禁忌证的是
Theyalwaysgivetheirvacantseatsto______comesfirst.
减小几何模糊,正确的措施是
患者妊娠36周,突然发生剧烈腹痛,面色苍白,血压降至80/60mmHg,脉弱,腹部检查子宫硬如板状,有压痛,胎位触不清,胎心听不清,宫口开大1cm。本病症最恰当的处理是
监理工程师对承包商( )的工程量,不予计量。
进口国要求提供海关发票主要是作为其海关减免关税的依据。
一般来说,居民委员会需要下设哪些委员会()。
(2012年真题)民事权利的私力救济方式包括
Forthispart,youareallowed30minutestowriteashortessayentitledCareerorMarriage?.Youshouldwriteatleast150wor
聘金(endowment)是中国传统习俗的一部分。通常,新郎(bridegroom)需要给新娘家一笔钱作为聘礼来定下婚礼。但是近几年来其标准不断上升,致使大多数家庭都很难达到。快速上涨的生活成本是聘金增加的主要原因。对于大多数年轻人来说,结婚意味着独立组建
最新回复
(
0
)