首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
admin
2015-08-17
116
问题
已知线性方程组(I)
及线性方程组(Ⅱ)的基础解系ξ
1
=[一3,7,2,0]
T
,ξ
2
=[一1,一2,0,1]
T
.求方程组(I)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为k
1
ξ
1
+k
2
ξ
2
=k
1
[-3,7,2,0]
T
+k
2
[-1,一2,0,1]
T
=[—3k
1
一k
2
,7k
1
—2k
2
,2k
1
,k
2
]
T
.其中k
1
,k
2
是任意常数,将该通解代入方程组(I)得:3(一3k
1
一k
2
)一(7k
1
—2k
2
)+8(2k
1
)+k
2
=一16k
1
+16k
1
—3k
2
+3k
2
=0,(一3k
1
一k
2
)+3(7k
1
—2k
2
)一9(2k
1
)+7k
2
=一21k
1
+21k
1
—7k
2
+7k
2
=0,即方程组(Ⅱ)的通解均满足方程组(I),故(Ⅱ)的通解。k
1
[-3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
.即是方程组(I),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rQw4777K
0
考研数学一
相关试题推荐
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设函数f(x)由下列表达式确定,求f(x)的连续区间和间断点,并判定间断点的类型.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Xi
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
求证:方程lnx=在(0,+∞)内只有两个不同的实根.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:=n:(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
随机试题
将区带电泳与免疫双扩散相结合的免疫化学技术是
[2012年,第13题]以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是()。
水位变动区域的外部混凝土,溢流面受水流冲刷部位的混凝土,避免采用()。
已采用公允价值模式计量的投资性房地产,不得从公允价值计量模式转为成本计量模式。()(2012年)
根据合伙企业法律制度的规定,有限合伙人的下列行为中,不视为执行合伙事务的有()。
英国发动两次鸦片战争的共同原因是()。
直线l:与平面π:4x-2y-2z=0的位置关系是()
某高校拟结合9月份我国通行的节日、纪念日举办校园文化系列活动,下列哪些主题会出现在当月的活动项目计划中()①学习国防知识,增强国防观念②缅怀抗战先烈,弘扬抗战精神③吾爱吾师,感谢师恩④节约粮食,从我做起⑤口腔健康,全身健康
2016年可以被称为“共享年”,截至2016年11月,已经诞生了摩拜、优拜、OFO、小呜、骑呗等多家共享单车品牌。针对上述5种单车品牌,武汉大学樱园宿舍的门前,特意设立了共享单车小车位。车位1至5从左到右停着5辆不同品牌不同颜色的单车,其中一辆为红色,并已
[2002年单选]资本家普遍获得相对剩余价值是()
最新回复
(
0
)