首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是区间(-π,π)内过()的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0。求函数y(x)的表达式。
设y=y(x)是区间(-π,π)内过()的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0。求函数y(x)的表达式。
admin
2019-08-01
69
问题
设y=y(x)是区间(-π,π)内过(
)的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y"+y+x=0。求函数y(x)的表达式。
选项
答案
当-π<x<0时,曲线上任一点处切线的斜率为y’。因为该点处的法线过原点,所以y=1/y’,即ydy=-xdx,两边积分可得y
2
=-x
2
+C。 将y(-[*]代入y
2
=-x
2
+C可得C=π
2
,则y=[*] 当0≤x<π时,y"+y=-x,其对应的齐次线性微分方程y’+y=0的特征方程为λ
2
+1=0,解得λ=±i,故y"+y=0的通解为y=C
1
cosx+C
2
sinx。 因为0不是特征根,所以设y"+y=-x的特解为y
*
=ax+b,代入y"+y=-x可得a=-1,b=0,故方程y"+y=-x的通解为y=C
1
cosx+C
2
sinx-x。 由y(x)是(-π,π)内的光滑曲线可知,y(x)在分段点x=0处连续且可导,而 [*] 所以C
1
=π,C
2
=1。综上, [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/rDN4777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
设有定义在(-∞,+∞)上的函数:以x=0为第二类间断点的函数是________.
设f(x)在[0,+∞)连续,f(x)=A≠0,证明:∫01f(x)dx=A.
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=,求y’与y’(1).
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
随机试题
流媒体无需先将整个影音文件下载并存储在本地计算机上就可以观看。
在进程调度算法中,_______调度算法比较适合于分时操作系统。
简述承诺的概念及构成要件。
A、coupleB、motherC、moneyD、coughD画线部分读[c],其他选项的画线部分读[Λ]。
对术后患者的一般护理要点有哪些?
A、间接监督B、目标管理C、行为控制D、组织文化E、群众控制行为控制包括的内容是()
A.毛茛苷B.天麻苷C.靛苷D.芥子苷E.芦荟苷属于S-苷的是
患者,男,43岁。主诉:右上前牙变色,牙间隙变宽2年余。检查:牙冠完整,呈灰黄色,发暗无光泽。根尖牙龈黏无窦道口,冷、热试验(—),牙髓电活力测验无反应,叩诊(—),无松动。下列不属于其治疗原则的是()
Arecentresearchindicatesthat______whentheyaregreatlyencouragedbytheparents,willthekidsimprovetheirabilityofde
教学如果没有进行道德教育,只是一种没有目的的手段。这个观点说明了()的重要性。
最新回复
(
0
)