首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
admin
2018-06-27
83
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:
∈(a,b)使得f(b)-
(b-a)
2
f’’(ξ).
选项
答案
在[*]处展开成 [*] 分别令 [*] 两式相加 [*] 由导函数的中间值定理[*]在η
1
,η
2
之间(ξ∈(s,b)),使得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Rik4777K
0
考研数学二
相关试题推荐
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
设f(x)在(-1,1)内具有二阶连续导数且f"(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2).
设曲线l位于xOy平面的第一象限内,l上任一点M处的切线与Y轴总相交,交点记为A.已知,且l过点,求l的方程.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
随机试题
A.出厂检验B.委托检验C.抽查检验D.复核检验E.进口药品检验国家的药品检验机构依法对生产、经营和使用的药品质量进行()。
A.癌细胞团中可见角化珠B.癌细胞团漂浮在黏液中C.黏液将癌细胞核推向一侧D.癌细胞排列成条索状E.癌细胞形成乳头鳞状细胞癌的组织学表现是
应放在4℃冰箱内保存的药物是
市场风险的种类,不包括()。
在商业银行中,起维护市场信心,充当保护存款者的缓冲器作用的是()
某债券的收益率为0.12,风险系数为1.3,假定无风险收益率为0.07,市场期望收益率为0.15,此时投资者最佳决策是()。
()是党和国家赋予公安机关的一项特殊使命,具有隐蔽性、长期性、尖锐性和复杂性的特点。
背景:儒家思想的核心是(),具体来说就是对国家的忠诚和对父母的孝道,对上忠诚、对下谦让。
社会主义对人类社会历史发展所作出的贡献有()
Therearefewplacesinthiscountry______wheatcan’tgrowwell.
最新回复
(
0
)