首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为2阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量. 若A2a+Aa-6a=0.求P-1AP,并判断A是否相似于对角矩阵.
设A为2阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量. 若A2a+Aa-6a=0.求P-1AP,并判断A是否相似于对角矩阵.
admin
2021-01-19
78
问题
设A为2阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.
若A
2
a+Aa-6a=0.求P
-1
AP,并判断A是否相似于对角矩阵.
选项
答案
设P
-1
AP=B,则AP=PB,即 A(a,Aa)=(Aa,A
2
a)=(Aa,6a-Aa)=(a,Aa)[*] 所以P
-1
AP=B=[*],即A~B.由[*] 得λ
-1
=-3.λ
2
=2.因为λ
-1
≠λ
2
,所以B可以相似对角化,则A可以相似对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qt84777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3,α4),其中A*为A的伴随矩阵,α1,α2,α3,α4为4维列向量,且α1,α2,α3线性无关,α4=α1+α2,则方程组A*x=0
设(x)=(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设函数f(χ)在区间[a,b]上连续,且恒大于零,证明:∫f(χ)dχ∫≥(b-a)2
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设其中A,B为n阶矩阵,A,B的伴随矩阵为A*,B*,求C的伴随矩阵C*.
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=一Aij<=>ATA=E,且|A|=一1。
设n阶非零实方阵A的伴随矩阵为A*,且A*=AT.证明|A|≠0.
随机试题
在三相异步电动机定子中起导磁作用的是()。
作为审美形态的悲剧、喜剧与人生实践的关系。
简述西蒙对决策理论的贡献。
迷走神经兴奋刺激胆汁分泌的特点是
期货市场的基本功能包括()。
采用可比销售法评估采矿权时,需要对已知采矿权转让中的市场成交价进行若干系数调整,这些系数包括()。
房屋出租时,对出租人而言,其出租凭证为()。
Cohesionisaconceptinrelationto________.
奥苏贝尔提出的有意义学习的三种同化模式是()。
菜单成本指的是商家调整产品价格而产生的成本。根据上述定义,下列选项属于菜单成本的是()。
最新回复
(
0
)