首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(a)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-06-28
81
问题
设f(x)在(a,b)内可导,证明:
,x
0
∈(a,b)且x≠x
0
时,f’(a)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
必要性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
[*] f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加 [*] [f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0 [*]f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 充分性:设f’(x)在(a,b)单调减少.对于[*],x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qZV4777K
0
考研数学二
相关试题推荐
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵。
设A=,ξ1=。求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,+η*+ξn-r线性无关。
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
连续函数f(x)满足f(x)=3∫0x(x-t)dt+2,f(x)=_______.
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()
求微分方程y"(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解。
证明不等式:χarctanχ≥ln(1+χ2).
随机试题
A谈话环境安静B谈话主题明确C交谈气氛轻松、自然D语句表达随意、开放E交流信息可靠、随机和患者正式交谈的主要特点是
妊娠恶阻脾胃虚弱证的用方是妊娠恶阻肝胃不和证的用方是
肾病综合征的低蛋白血症的临界值是
下列关于强心苷药理作用的描述,正确的是
可导致“金鸡纳反应”的药物是()。
环状染色体是()。
建设项目中的投资各方现金流量中的现金流入一般为( )。
工业项目的建设方案设计的要求包括()。
计算机内部采用()表示数据。
云南属亚热带高原季风型气候,立体气候特点显著,有“一山分四季,十里不同天”之说。()
最新回复
(
0
)